Asterisk

Asterisk Administrator Guide

Asterisk Development Team <asteriskteam@digium.com>

L. GettiNg Startedottt 6

1.1 Precursors, Background and BUSINESSot 7
1.1] ASEENISK CONCEPES . . .t ittt ettt e e 8

1.2 Beginning ASteriok . . . 11
12,0 InStalling AStEriSK . .ottt e e 12
1.2.2 Asterisk Configuration Files 27

1.2.3 BasiCc PBX FUNCHONAIIYot e e e e 40
1.2.4 Dialplan Fundamentals e s 47
1.2.5 Auto-attendant and IVR MENUS oo e e 60
1.2.6 Dialplan ArChiteCtUre e s 68
1.2.7 Installing ASteriSK FrOmM SOUICEttt et e et e e e e e e e e 86
1.2.8 Getting Started With ASterisk 101
1.2.9 ASterisk ArCRItECIUIE . . . o oo ettt e e e 107
1.2.10 Asterisk on (OPeN)SOIarSot 127

2. Configuration and OpPerationttt e e e 129
2.1 Asterisk Calendaring oot e e e 130
2.1.1 Configuring Asterisk Calendaringttt 131
2.1.2 Calendaring Dialplan FUNCHONS e e e e e e e e e e e e e e 132
2.1.3 Calendaring Dialplan EXamples e 133

2.2 Asterisk Channel DIIVEISot e e e et e e e e e e e e e e e 135
2.2.1 Inter-Asterisk eXchange protocol, VErsion 2 (IAX2)ot e e e 136
2.2 2 MISDN L 142
2.2.3 L0cal Channel 154
2.2 4 Mobile Channel 165

2. 2. UNIS M o 177
2,28 SKINNY 194

2.3 ASterisk CoNfigUIAtIONttt et e e 200
2.3.1 General Configuration INfOrmation e 201
2.3.2 Database Support Configurationttt e e 215
2.3.3 Privacy Configurationo e e e 223

2.4 Asterisk EXtension Language (AEL)ottt e e 234
2.4.0 Introduction 10 AE L . .o o e 235
2.4.2 AEL and Asterisk in a NUEShello 236
243 Getting Started With AEL 241
2.4.4 AEL DEDUGOING . .ttt ettt e e e 242
2.4, 5 ADOUL BBl PArSE . . e 243
2.4.6 General NOtes aboUt AEL SYNtaX v vttt et e e et e 244
247 AEL KeYWOIUS . . .ottt e e e e e e e e e e 245
2.4.8 AEL Procedural Interface and INternals 246
2.4.9 AEL EXAMPIE USAOES . . . ottt ittt e e et et e e e e e 250
2.4.00 AEL EXamMPIES . ..ot 267
2.4.11 AEL SemantiC CheCKSt e e e e e e e e e 268
2.4.12 Differences with the original version Of AEL it e e e e e 269
2403 AEL HINtS @GN0 BUGS . . . o oot ittt et e e e et e e e e e e e e 270
2414 The Full Power Of AEL ... oo 271

2.5 Asterisk Manager Interface (AMI) 272
2.5.1 The Asterisk Manager TCP [P APl e 273
2.5.2 AMICOmMMANA SYNTAX . . .o ot ittt et e e e e e e e e e e e e e e e e e 274
2.5.3 AMI Manager COMMAaNGS v ottt ettt e e et et e e e e e et e e e 275

2. 5.4 AL EXAMIDIES . o 276
2.5.5 Ensuring all modules are loaded With AMI 277
2.5.6 Device Status Reports With AMI 278
2.5.7 Some Standard AMI Headers 279
2.5.8 Asynchronous Javascript Asterisk Manger (AJAM)ot 282

2.6 ASEEIISK QUEBUES . .ttt ittt e e e e 286
2.6.1 Configuring Call QUEUES oottt et et et e e e e e e e e e e e 287
2.6.2 QUEBUE LOOS oot ettt et e e e e e 298

2.7 Asterisk SeCUrity FrameWorK e 300
2.7.1 Security Framework OVeIVIBWottt ettt e et e e e e e 301
2.7.2 Security EVENt GENEIAtioNot e e 302

2.7.3 ASterisk SECUNtY EVENE LOGOET . . . v vttt ettt et e e e e e et e e e e e e 303

2.7.4 SECUNtY EVENTS 10 LOG . . . oottt e e e e e e 304

2.7.5 Security LOg File FOrmMat e 305
2.8 ASterisk SOUNAS PacKagesottt e e e 307
2.8.1 Getting the SOUNAS TOOISo i e e e e e e e e e e e e e e 308
2.8.2 About the SoUNS TOOIS e 309
2.9 Call Completion Supplementary ServiCes (CCSS)ottt it e e e e e e e e e e 310
2.9. 1 CCSS GIOSSANY . . v vttt et ettt e e e e 311
2.9.2 The Call Completion ProCESSottt e e e e e e e e e e e e e e e 312
2.9.3 Call Completion INfo and TIPS . ..ttt e e e e e e e 314
2.9.4 Generic Call Completion EXample 316
2.10 Call Detail RECOrds (CDR) ..ottt e e e e e e e e e e e e 317
2.10.1 CDR APPICAIONS . . oottt e e e 318
2.00.2 CDR FIelUs .o 319
2.10.3 CDR Variables . ..o 320
2.10.4 CDR Storage BaCKendst e 321
2.11 Calling USING GOOGIEottt e e et e e e e e e e e 332
2.12 Channel Event Logging (CEL)ttt e et e e e e e e e e e e 336
2.12.1 CEL DESIGN GOAIS . . oottt ittt e e e e e e e e e e 337
2122 CEL Events and Fieldso 347
2.12.3 CEL Applications and FUNCLONS e e e e e e e e e e e e e 349
2.12.4 CEL Configuration Filest e e e e e e e e 352
2.12.5 Generating Billing Information from CEL s 353
2.12.6 CEL Storage Backendst e e 354
2. 13 Channel Varniables 364
2.13. 1 Parameter QUOLING . .ottt e ettt e e e e e e e 365
2.13.2 AboUL Variables e e 366
2.13.3 Variable INheritance 367
2.13.4 Selecting Characters from Variables e 369
2. 03 D EXPIESSIONS . o vttt et e e e e e 370
2.13.6 Asterisk Standard Channel Variables 384
2,037 CaSE SONSIIVITY . oottt e e 400
2.14 Distributed Universal Number Discovery (DUNDI)t e e e e e e e e e e e 402
2.14.1 Introduction 10 DUNDI oot e e e 403
2.14.2 DUNDIQUERY and DUNDIRESULTttt ittt et et e e e e e e e e e e e e e e 404
2.14.3 DUNDI PeeriNg AQreemIEBNT . . oottt ettt e et et e e e e e et e e e e 405
2.15 E.164 NUmMber Mapping (ENUM) . ..o e e e e e e e e e e 410
2.15.1 The ENUMLOOKUP Dialplan FUNCLION e e e e e e e 411
2.0 FRaAUNES . . oot e 419
2.16.1 ASterisk APPICatioNS 420
2.16.2 Asterisk Call Files e 425
2.16.3 Asterisk Command Line INterface 427
2.16.4 Asterisk Manager Interface (AMI) Changes ittt e e e e e 428
2.16.5 BUIldiNg QUEUES . ..ottt e e e e 437
2.16.6 Call Completion Supplementary SEIVICESt e e e e e e e e 452
2.06.7 Call QUEBUES ..ottt ettt e e e 453
2.16.8 Channel DIiVEIS oottt e e e e e e 454
2.06.9 COMOSYNC o v vttt ettt e e e e e 455
2.16.10 Database TranSaCtioNSttt et e e e e e e e e e e e 458
2.16.11 Distributed DeVICE STAEttt e e 459
2.16.12 DUND:I - Distributed Universal NUMber DISCOVEIYottt e et e e e e e e e e e e e 472
2.16.13 External IVR INterface 480
2.16.14 Followme - ReaItIMeo e e 483
206815 IAX2 SECUMLY . . . ottt et e e e e e e e e e e 484
2.16.16 LDAP Realtime DIIVErot e e e e e e e e e e 490
2.16.17 Open Settlement Protocol (OSP) USer GUIAEttt e e e e e e e e e e 492
2.16.18 PSTN CONNECHIVILY . .. oot ittt e et e 509
2.16.19 Real-time Text (T.140)ttt et e e e e e e e e e e 517
2.16.20 RTP PacCKetizationot e e e e e e e 518
2.16.21 Simple Message Desk Interface (SMDI) INtegrationttt e 520
2.16.22 Simple Network Management Protocol (SNMP) SUPPOIt it e e e 523

2.16.23 SIP RetraNSMISSIONS . . .ttt ittt et e et e et et e e e e 535

2.16.24 SIP TLS TranSPOrtttt ettt et e 537

2.16.25 Speech ReCOogNItioN APl . . . 539
2.16.26 SQLite Tables 544
2.16.27 Storing Voicemail in PostgreSQL via ODBC 547
2.16.28 TimMINg INtEIaCES . . . ottt e e e e 554
2.16.29 Using the Hoard Memory Allocator With ASteriSKo e 556
2.16.30 VIdEO CONSOIE . . oottt 557
2.16.31 VIdeo Telephony 560
2.17 Lua Dialplan Configuration e 561
2.17.1 Dialplan to Lua ReferenCe 562
2.17.2 Interacting with Asterisk from Lua (apps, variables, and functions) i 567
2.17.3 Lua Dialplan Tips @nd TriCKS oo e e e e e e e 569
2.17. 4 Lua Dialplan HintsS . ..o e e 571
2.17.5 Lua Dialplan EXampleso e 572
2.17.6 Advanced phX_lUa TOPICSottt e 574
2.18 Manipulating Party ID INfOrmation 576
2.19 Packet LOSS CoNnCealmMENt (PLC) ...ttt et e e e 581
2.19.1 PLC Background on Translation e 582
2.19.2 PLC Restrictions and CaveatSttt e 583
2.19.3 Requirements fOr PLC USEttt e e e et e e e e 584
2,004 PLC TIPS ot ittt et 585
2.20 Phone Provisioning iN ASEEriSKot e e 586
2.20.1 Configuration of pPhoneproV.CONT e e 587
2.20.2 Creating Phone Profiles 588
2.20.3 Configuration Of USEIS.CONfttt e e 589
2.20.4 Phone Provisioning TEMPIAteSot et et e e e e e e e 590
2.20.5 Phone Provisioning, Putting it all together e 591
2.21 Reference Information INtrodUCLIONo e e 592
2.21.1 License INfOrmation 593
2.21.2 Important Security CoNSIAErationNS e 595
2.21.3 Telephony Hardwarettt e et e e e e e 600
2.22.SeCUrE Callingot e 605
2.22.1 Secure Calling SPECIICSt ittt 606
2.22.2 Secure Calling TULOIAlo o e 607
2.23 Shared Line AppearanCes (SLA) ...t e e 613
2.23.1 Introduction to Shared Line Appearances (SLA)t e 614
2.23.2 SLA Configurationt 615
2.23.3 SLA Configuration EXampleso e 620
2234 SLA and Call Handling . .. oot e e e 624
2.24 Short MeSsage ServiCe (SMS) ... e e e e e e 629
2.24.1IntrodUction 10 SMS . . o . L 630
2.24.2 SMS and exXtensioNS. CONT 631
2.24.3 SMS Background o 632
2.24.4 SMS DeliVery Re OIS . . .ot e 633
2,245 SMS File FOMALS . ..ottt e e e e e 634
2.24.6 SMS SUD AQUreSS . . oottt e 635
2.24.7 SMS TeIMINOIOGY . . v vttt et et et e e e et et e e e e 636
2.24.8 SMS Typical Use With ASteriSKo e e e e e e 637
2,249 USING SMSQ . .ottt 638
2.25 V0ICEMAIL . .ot 640
2.25.1 ODBC VOICEMAl StOTA0E . . . v oottt ettt e e e e e e e e e e e e 641
2.25.2 IMAP Voicemail STOrageottt e 642
2.26 ASterisk SIP CONNECHONSttt ettt et e e et e e e e e e e e e e e 650
2,27 AStEriSK GUI . .o 651
2,28 HIStONCAl Pages ..o ittt e e 655
2.28.1 Jabber in ASteriSK . ..o 656
2.28.2 0ld Calling USING GOOGIEt i ettt e e e e e e e e e 658

3. ASEEIISK VBISIONS . . o ot 662
4, ASterisk MoUIE SUPPOI StalESttt ettt e e e e e e e e e 664
5. ASterisk ISSUE GUIdEIINESo e e e e e e e 669

6. ASTENISK COMMUNILY . . .ottt et e e e e e e e e e e e 675

6.1 Asterisk COmMMUNITY SOIVICESttt ettt et e e e e e e e e e 676
6.2 COMMUNILY SEIVICES SIONUD . . o vttt et et et e 677
B.3 IR C 678
6.4 Mailing LiStS . . .o 679

Getting Started

A Beginners Guide to Asterisk. Herein, you will find content related to installing Asterisk and basic usage concepts.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Precursors, Background and Business

Discovering Asterisk
This section of the documentation attempts to explain at a high level what Asterisk is and does. It also attempts to provide primers on the key technical
disciplines that are required to successfully create and manage Asterisk solutions. Much of the material in this section is optional and may be redundant for

those with a background in communications application development. For the other 99.9875% of the population, this is good stuff. Read on...

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Asterisk Concepts

Asterisk is a very large application that does many things. It can be somewhat difficult to understand, especially if you are new to communications
technologies. In the next few chapters we will do our best to explain what Asterisk is, what it is not, and how it came to be this way. This section doesn't
cover the technology so much as the concept. If you're already familiar with the function of a telephony engine, feel free to jump ahead to the next section.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 8

Asterisk as a Swiss Army Knife of Telephony
What Is Asterisk?

People often tend to think of Asterisk as an "open source PBX" because that was the focus of the original development effort. But calling Asterisk a PBX is
both selling it short (it is much more) and overstating it (it can be much less). It is true that Asterisk started out as a phone system for a small business (see
the "Brief History" section for the juicy details) but in the decade since it was originally released it has grown into a universal tool for building
communications applications. Today Asterisk powers not only IP PBX systems but also VoIP gateways, call center systems, conference bridges, voicemail
servers and all kinds of other applications that involve real-time communications.

Asterisk is not a PBX but is the engine that powers PBXs. Asterisk is not an IVR but is the engine that powers IVRs. Asterisk is not a call center ACD but
is the engine that powers ACD/queueing systems.

Asterisk is to communications applications what the Apache web server is to web applications. Apache is a web server. Asterisk is a communication
server. Apache handles all the low-level details of sending and receiving data using the HTTP protocol. Asterisk handles all the low level details of sending
and receiving data using lots of different communication protocols. When you install Apache, you have a web server but its up to you to create the web
applications. When you install Asterisk, you have a communications server but its up to you to create the communications applications.

Web applications are built out of HTML pages, CSS style sheets, server-side processing scripts, images, databases, web services, etc. Asterisk
communications applications are built out Dialplan scripts, configuration files, audio recordings, databases, web services, etc. For a web application to
work, you need the web server connected to the Internet. For a communications application to work, you need the communications server connected to
communication services (VolP or PSTN). For people to be able to access your web site you need to register a domain name and set up DNS entries that
point "www.yourdomain.com" to your server. For people to access your communications system you need phone numbers or VoIP URIs that send calls to
your server.

In both cases the server is the plumbing that makes your application work. The server handles the low-level complexities and allows you, the application
developer, to concentrate on the application logic and presentation. You don't have to be an expert on HTTP to create powerful web applications, and you
don't have to be an expert on SIP or Q.931 to create powerful communications applications.

Here's a simple example. The following HTML script, installed on a working web server, prints "Hello World" in large type:

<htm >
<head>
<title>Hello World Deno</title>
</ head>
<body>
<hl>Hell o Worl d! </ hl>
</ body>
</htnm >

The following Dialplan script answers the phone, waits for one second, plays back "hello world" then hangs up.

exten => 100, 1, Answer ()
exten => 100, n, Wit (1)
exten => 100, n, Pl ayback(hel | o-wor| d)
exten => 100, n, Hangup()

In both cases the server components are handling all of the low level details of the underlying protocols. Your application doesn't have to worry about the
byte alignment, the packet size, the codec or any of the thousands of other critical details that make the application work. This is the power of an engine.
Who Uses Asterisk?

Asterisk is created by communication system developers, for communication system developers. As an open source project, Asterisk is a collaboration
between many different individuals and companies, all of which need a flexible communications engine to power their applications.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 9

A Brief History of the Asterisk Project

Way, way back in 1999 a young man named Mark Spencer was finishing his Computer Engineering degree at Auburn University when he hit on

an interesting business concept. 1999 was the high point in the .com revolution (aka bubble), and thousands of businesses world-wide were discovering
that they could save money by using the open source Linux operating system in place of proprietary operating systems. The lure of a free operating
system with open access to the source code was too much to pass up. Unfortunately there was little in the way of commercial support available for Linux
at that time. Mark decided to fill this gap by creating a company called "Linux Support Services". LSS offered a support hotline that IT professionals could
(for a fee) call to get help with Linux.

The idea took off. Within a few months, Mark had a small office staffed with Linux experts. Within a few more months the growth of the business expanded
demanded a "real" phone system that could distribute calls evenly across the support team, so Mark called up several local phone system vendors and
asked for quotes. Much to his surprise, the responses all came back well above $50,000 -- far more than Mark had budgeted for the project. Far more
than LSS could afford.

Rather than give in and take out a small business loan, Mark made a fateful decision. He decided to write his own phone system. Why not? A phone
system is really just a computer running phone software, right? Fortunately for us, Mark had no idea how big a project he had take on. If he had known
what a massive undertaking it was to build a phone system from the ground up might have gritted his teeth, borrowed the money and spent the next
decade doing Linux support. But he didn't know what he didn't know, and so he started to code. And he coded. And he coded.

Mark had done his engineering co-op at Adtran, a communications and networking device manufacturer in Huntsville, AL. There he had cut his teeth on
telecommunications system development, solving difficult problems generating a prodigious amount of complex code in short time. This experience proved
invaluable as he began to frame out the system which grew into Asterisk. In only a few months Mark crafted the original Asterisk core code. As soon as he
had a working prototype he published the source code on the Internet, making it available under the GPL license (the same license used for Linux).

Within a few months the idea of an "open source PBX" caught on. There had been a few other open source communications projects, but none had
captured the imagination of the global population of communications geeks like Asterisk. As Mark labored on the core system, hundreds (now thousands)
of developers from all over the world began to submit new features and functions.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 10

Beginning Asterisk

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

11

Installing Asterisk

Now that you know a bit about Asterisk and how it is used, it's time to get you up and running with your own Asterisk installation. There are various ways to
get started with Asterisk on your own system:

® |nstall an Asterisk-based Linux distribution such as AsteriskNOW. This takes care of installing Linux, Asterisk, and some web-based
interfaces all at the same time, and is the easiest way to get started if you're new to Linux and/or Asterisk.

® |f you're already familiar with Linux or Unix, you can simply install packages for Asterisk and its related tools using the package manager
in your operating system. We'll cover this in more detail below in Alternate Install Methods.

® For the utmost in control of your installation, you can compile and install Asterisk (and its related tools) from source code. We'll explain
how to do this in Installing Asterisk From Source.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 12

Installing AsteriskNOW

Thank you for downloading AsteriskNOW. This Linux distribution has been carefully customized and tested with Asterisk, and installs all of the packages
needed for its use. It is the officially recommended development and runtime platform for Asterisk and Digium hardware, including Digium phones.

This guide provides a brief overview of installation, configuration, and maintenance of your system.
More information is available at http://wiki.centos.org/.

Please report any bugs at https://issues.asterisk.org/jira

Installation

® Burn the AsteriskNOW DVD image to DVD disc and then boot from the DVD to begin the installation process.
® |f you are unfamiliar with burning disc images, the Ubuntu community has a great Burning ISO Howto available at https://help.ub
untu.com/community/BurninglsoHowto.
® |f you are unfamiliar with booting to DVD, the Ubuntu community has a wonderful Boot From DVD HOWTO available at https://he
Ip.ubuntu.com/community/BootFromCD.

® After booting from the AsteriskNOW DVD, you will be presented with the following screen and options for an installation with, or without
the FreePBX web interface. This QuickStart assumes that the FreePBX web interface has been installed. To do this, selection option 1
and press <ENTER>:

8 00 AsteriskNOW 3.0 x86_64 [Running]

dlgéf)um

AsteriskNOW

= To install with Asterizsk 11 and FreePBX, tuype:

— To install with fisterisk 11 omly, type:
hoot: _

G} This will begin the automated graphical installation process.

® During the installation, you are first presented with an option for setting the system Time Zone:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 13

http://wiki.centos.org/
https://issues.asterisk.org/jira
https://help.ubuntu.com/community/BurningIsoHowto
https://help.ubuntu.com/community/BurningIsoHowto
https://help.ubuntu.com/community/BootFromCD
https://help.ubuntu.com/community/BootFromCD

800 AsteriskNOW 3.0 x86_64 [Running]

Please select the nearest city in your time zone:

Selected city: Chicago, america (Central Time)
America/Chicago = k

System clock uses UTC

wp Hext

** Choose the location that is nearest to you and move to the next screen.

® Next, you will be prompted to set a root password:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

14

8.0

The root account is used for administering
| the system.®nter a password for the root
user,

Root Password: [+eseer

Confirm:

The 'root' user is the administrative account for Linux systems. Most system configuration requires 'root' access. If this password is lost,
it is impossible to recover. It is recommend that your password contain a mix of lowercase and UPPERCASE letters, numbers, and/or
symbols. Or, if you're into entropy, try a pass phrase.

® Then, you will choose your Hard Disk Layout:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 15

http://xkcd.com/936/

Which type of installation would you like?

Use All Space
i~ Removes all parttions on the selected dewiceis). This Includes partitions created by other aperating
L

oy
Thp: This aptsan will remove data frem the selocted dovicels). Make sure you have backugs,
Replace Existing Linux System(s)

Pemeves only Linux partitions (created from a pravious Linu instaliation]. This does not ramove athar
it you may Rawe o your slorage device(s) uch as VAT o FATIZ2)

Tht This aptian will ramowve data frem the selocied dovicels). Make sure you have backups,

Shrink Current System
Snrinks existing partitions to create free space for the default inyout.

Use Free Space
Retalns your current data and partitions and uses enly the unparttioned space on the selected device
18, ARSUMING you have encugh free space avallabile,

Create Custom Layout
Manually create your own custom layout on ihe selecied deviceds) using ow partstionsng tool,

[Emcrypt system
[Reyiew and modify partitiening layout

@ It is recommended to select "Use All Space" and move to the next screen.

* Now, sit back, relax, have a cup of coffee and wait while the system is installed. This will take approximately 15-30 minutes. You will see
a progress bar indicating the installation status.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 16

800 AsteriskNOW 3.0 x86_64 [Running]

CentOS 6

Community ENTerpriss Operating System

Packages completed: 33 of 470

installing glib2-2.22.5-7.el6.x86_64 (4 MB)
A library of handy utility functions

Once installation has completed, you will be prompted to reboot into your installation:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

17

800 AsteriskNOW 3.0 x86_64 [Running]

Congratulations, your CentOS5 installation is complete.

L j Please reboot to use the installed system. Mote that updates may be available to ensure the proper
functioning of your system and installation of these updates is recommended aftér the reboot.

i reboog

® After the system reboots you will see this screen:

8 00 AsteriskNOW 3.0 x86_64 [Running]

o configure AsteriskNOW with FreePBX, point your web browser to http:-/~,192.168.
.188~

localhost login:

Qo Ot ® 4

Congratulations! You have successfully installed AsteriskNOW.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

18

1 Notice the text that says "To configure AsteriskNOW with FreePBX, point your web browser to http://xx.xx.xx.xx/." Write this down, you will need

it in the next section.

® Now, before you move on, it is important to update your AsteriskNOW system to the latest Linux packages. To do this, use the yum utility

"yum." Perform a "yum update”

8 00 AsteriskNOW 3.0 x86_64 [Running]

AsteriskNOW 3.8.8

To configure AsteriskNOW with FreePBX, point your web browser to http:-/192.168.
6 .188~

localhost login: root

Password:
Last login: Mon Mar 18 16:86:13 on ttyl

[rootPlocalhost 7 1# yum update_

Qo OFleft® 4

** |f new packages are available for installation, the utility will ask permission to install them. And, if the utility has not been run before, it
may ask permission to accept a yum key. You should accept both to stay up to date.

® You are now ready to move on to configuration of AsteriskNOW from the FreePBX web interface.

FreePBX Configuration

® To configure your system using FreePBX, open a web browser on another PC to the address specified during boot, e.g. "To configure
AsteriskNOW with FreePBX, point your web browser to http://xx.xx.xx.xx/. If successful, you will be presented with the FreePBX main

screen:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 19

http://xx.xx.xx.xx/
http://xx.xx.xx.xx/

€ & C | [)192.168.0.108

0=

: ;§% Welcome

Voicemail & Recordings {(ARI

FreePBX Administration

® From here, we want the "FreePBX Administration" link. Click it, and you will see the FreePBX login screen:

7’ FreePBX Administration % |\ |

€ - C | [} 192.168.0.108/admin/config.php

0

Login

To get started, please enter your credentials:

admin

F PBX FreePBX is a ragistered trademark of Bandwidth.com h The FreePBX project i sponsored in part by:
FreePBX is lcensad under GPL @ Schmooza Com, Inc.
ree S Schmocgzg 0

Pel ing™ | |
> let freedom ring ‘Sponsored by:Bandwidth.com Schmooze Com Ine and providers of Professional Suppon & Services

The default username is admin
The default password is admin

® Having successfully logged into FreePBX, you will see the FreePBX dashboard:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

20

© 00 freepixAdminismaion x| o
€« - C' | [} 192.168.0.108/admin/config.php b =
‘)‘:_’2" Admin v | Applications v | Connectivity v Reports v | Settings v \!J Logout: admin | Language =
FreePBX System Status
FreePBX Notices System Statistics
4 File fetc/dahdi/modules is not owned by root (<]-] Processor
4 File fetc/dahdifsystem.conf is not owned by root @Q Load Average 021
/A File fetc/modprobe.d/dahdi.conf is not owned by root @@ | | [pPu 2%
/i No Conference Room App =] Memory
A\ gymiink from modules failed @ [E§#liemory 16%.
5 There are 1 bad destinations @ [swap 0%
& Default ARI Admin password Used -] Disks
& Defautt Asterisk Manager Password Used Q i a2
@ Collecting Anonymous Browser Stats @@ | |/devshm (G
show all Lo 11%|
Networks
FreePBX Statistics Eidl=osive DO0IES
eth0 transmit 0.00 KBfs.
Total active calls 0
Internal calls o
External calls o Somver; us
Total active channels 0 Asterisk -0k
FreePBX Connections MySQL oK
Web Server Lok
SSH Server

Notice the Red reload button. It will appear after changes are made to any page. If you see it, it should be clicked, it will affect any changes on
the system that FreePBX needs to make. This guide assumes that whenever you see it, you will click it.

® Next, we will change the default admin password. This is imperative! Failure to do this is inviting disaster. The importance of doing this C
ANNOT be understated.
® First, visit the Admin tool

0 00O o recppxadministration % || i ; ; &
€ - € |[Y 192.168.0.108/admin/config.php?display=index | =
3‘«:2" Admin v Applications v ‘Connectivity v Reports v Sertings v Logout: admin Language ~
Digium Addons
Fr(saminisatos 3 Status
Custom Destinations.
Custom Bxtensions paaPBX Notices System Statistics
Feature Codes
Ay peepixsupport UleS Is notowned by asterisk =~ ©@© Processor
A\ podule Admin em.conf is not owned by asterisk @@ | | Load Average 0.29
A system Recordings didahdi.conf is not owned by asteriGk@ cpPu 2%
A Symiink from modules failed Memory
£ There are 1 bad destinations C] BB mory 21%
< Default ARI Admin password Used © | | swap 0%
& Defautt Asterisk Manager Password Used C] Diska
@ Collecting Anonymous Browser Stats @ |1 3%
show all fdevishm 0%
0 1%
FreePBX Statistics LETmie
Total active calls 0 NG S0RED
Internal calls o eth0 transmit 0.00 KB/s.
External calls 0
Total active channels 0 Server Status
FreePBX Connections Asterisk oK
MysaL Lok
Untime Web Server ok
SSH Server 0K
System Uptime: 12 minutes
Asterisk Uptime: 11 minutes
Last Reload: 44 seconds
192.168.0.108/admin/config.php?display=ampusers

® Next, select admin from the right column

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 21

*Z*FreePBX Administration

e« ->C |D 192.168.0.108/ad min/config.php?display=ampusers ﬁ‘

mn
#/ V% | Admin v || Applications v || Connectivity v | Reports v || Settings Logout: admin Language v

Add Administrator Add User

General Settings

Username
Password :

Access Restrictions

Department Name :
Extension Range :

Admin Access Inbound Routes
Outbound Routes
Trunks

Reports
Asterisk Logfiles
CDR Reports.
FreePBX System Status
Settings
Advanced Settings
Asterisk Logfile Settings
Music on Hold
Voicemail Admin
Apply Changes Bar
Add Extension
ALL SECTIONS

Submit Changes

FreePBX s a registered rademarx of Bandwidth.com ‘The FreePBX project is sponsored in part by:
V% FreaaDRY ssred o it s ssonsares npar by

@ Schmooze Com., Inc.
192.168.0.108/admin/config.php?display=ampusers&userdisplay=admin |, Proud sponsors, contributors,

® Then, change the admin password

*Z*FreePBX Administration

e« ->C |D 192.168.0.108/admin/config.php?display=ampusers&userdisplay=admin ﬁ‘

mn
#/ V% | Admin v || Applications v || Connectivity v | Reports v || Settings Logout: admin Language v

Edit Administrator v
© Delete User: admin

General Settings

Username admin

e - S—

Access Restrictions

Department Name :
Extension Range :

Admin Access Inbound Routes.
Outbound Routes
Trunks

Reports
Asterisk Logfiles
CDR Reports
FreePBX System Status
Settings
Advanced Settings
Asterisk Logfile Settings
Music on Hold
Vaicemail Admin
Apply Changes Bar
Add Extension
ALL SECTIONS

® Finally, one should update any out of date modules on the system. To do this, we will visit the Module Admin tool:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

7’ FreePBX Administration %

€« >0 ID 192.168.0.108/admin/config.php?display=modules ﬂ?] =

‘KD‘*[Admin ~ | Applications + | Connectivity | Reporis + | Setings = | | Logout:admin | Language +

Module Administration

Repositories 3 | extended || Unsupported | Commercial |

[Check Online] | Upload modules |

Publisher

Applications

® Click the Check Online button and you will see any out of date modules

7’ FreePBX Administration %

€ & C | [192.168.0.108/2dmin/config.ohp 77| =

‘KD‘*[Admin ~ | Applications + | Connectivity | Reporis + | Setings = | | Logout:admin | Language +

Module Administration

%iﬁ OPEN i o Dlglu“rzm,qu (perdEADtiicatiy
, & TELEPE Astensk May 21-24, 2013
= BT TELEPHONY TRAININ ¥ 2124, 2013

FreePBX SIP Trunking Service Now Available - Click Above To Get Started! \ /
Manage local modules (7 Show only upgradeable

Download all Upgrade all | Reset | | Process |

Publisher

Applications

® To update a module, click it, and then select the Download option

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

O S e
© O O /- Freepsx Administration % X \ =

€ - C | [192.168.0.108/admin/config.php wl =

3% | Admin v | Applications v | Connectivity v | Reports v | Settings = Logout: admin | Language v

Module Administration

Limited Seating. Sign-up Now Seats Are Filling Fast
OPEN TELEPHONY TRAINING SEMINAR

OPEN TELE 3 e 2013
FreePBX SIP Trunking Service Now Available - Click Above To Get Started!

3-8 OrEN
@ T[L[F‘H()NI

TRAIN uA

Manage local modules () Show only upgradeable

Download all Upgrade all | Reset Process

Module Version Publisher
Admin
Backup & Restore Schmoozecom.com Not Installed (Available online: 2.10.0.41)
Blacklist FreePBX Not Installed (Available online: 2.10.0.1)
(Caller|D Lookup FreePBX Not Installed (Available online: 2.11.1.3)
|Custom Applications 211.0.0 FreePBX Enabled and up to date
Digium Addons 281 Digium Enabled; Not available online
Feature Code Admin 2.10.0.3 FreePBX Enabled and up to date
FreePBX ARI Framework 2.10.0.5 FreePBX Disabled; up to date
FreePBX F ork 2.11.0.0beta2.2 FreePBX Disabled; Online upgrade available (2.11.0.0beta2.6)
Action | O No Action
Description Engb\s
T) Uninstall)
=) Download 2.11.0.0beta2.6, keep Disabled

Recordings 3.3.11.8 FreePBX Enabled and up to date
User Panel FreePBX Not Installed (Available online: 2.10.0.0)

192.168.0.108/admin/config.php?display=modules

® Finally, press the Process button and follow the instructions to complete the module update.

Updating, Querying, Removing Packages
After completing installation of AsteriskNOW, all of the packages for running Asterisk are installed. However system updates are often available.

AsteriskNOW contains several yum repositories in addition to the ones provided by CentOS. These are asterisk-current/asterisk-tested and
digium-current/digium-tested. The asterisk- repositories contain packages for Digium-provided Open Source software (such as Asterisk, libpri, and DAHDI).
The digium- repositories contain non-free or commercial software (such as the Digium Phone module for Asterisk, G.729 for Asterisk, Fax For Asterisk, and
the HPEC echo cancellation module). This allows you to install additional software and to stay up to date with the latest changes.

Packages can be installed or removed by using “yum install <package>" or “yum remove <package>". Updates should be regularly installed by using “yum

update’. For a very full list of available and installed packages, you can use “yum list | less’. For more information about Yum, visit http://yum.baseurl.org/wi
ki’'YumCommands or type "man yum".

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 24

http://yum.baseurl.org/wiki/YumCommands
http://yum.baseurl.org/wiki/YumCommands

Alternate Install Methods
If you already have a Linux system that you can dedicate to Asterisk, simply use the package manager in your operating system to install Asterisk, DAHDI,

and libpri. Most modern Linux distributions such as Debian, Ubuntu, and Fedora have these packages in their repositories. Packages for Red Hat
Enterprise Linux and CentOS are also available at http://packages.asterisk.org/ (see Asterisk Packages for instructions on use).

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 25

http://packages.asterisk.org/
https://wiki/display/AST/Asterisk+Packages

Validating Your AsteriskNOW Installation

Before continuing on, let's check a few things to make sure your system is in good working order. First, let's make sure the DAHDI drivers are loaded. After
logging in as the root user you can use the Ismod under Linux to list all of the loaded kernel modules, and the grep command to filter the input and only
show the modules that have dahdi in their name.

‘ [root @erver asterisk-1.6.X. Y]# |snod | grep dahdi ‘

If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

‘ [root @erver asterisk-1.6.X. Y]# service dadhi start ‘

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the output below. (The exact details may be different, depending on
which DAHDI modules have been built, and so forth.)

[root @erver ~]# Isnod | grep dahdi

dahdi _dumy 4288 0

dahdi _transcode 7928 1 wet cdxxp

dahdi _voi cebus 40464 2 wet dnR4xxp, wet el2xp

dahdi 196544 12 dahdi _dumy, wet dn4xxp, wet e11xp, wet 1xxp, wet e12xp, wet 4xxp
crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices in your system. You can also run the dahdi_tool utility to
show the various DAHDI-compatible devices, and their current state.

To check if Asterisk is running, you can use the Asterisk initscript.

[root @erver ~]# service asterisk status
asterisk is stopped

To start Asterisk, we'll use the initscript again, this time giving it the start action:

[root @erver ~]# service asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any response on the command line. We can check the status
of Asterisk and see that it's running by using the command below. (The process identifier, or pid, will obviously be different on your system.)

[root @erver ~]# service asterisk status
asterisk (pid 32117) is running...

And there you have it... you have an Asterisk system up and running! You should now continue on in Section 202. Getting Started with Asterisk.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 26

Asterisk Configuration Files

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

27

Intro to Asterisk Configuration Files

In this section, we'll introduce you to the Asterisk configuration files, and show you how to use some advanced features.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

28

Config File Format
Asterisk is a very flexible telephony engine. With this flexibility, however, comes a bit of complexity. Asterisk has quite a few configuration files which control

almost every aspect of how it operates. The format of these configuration files, however, is quite simple. The Asterisk configuration files are plain text files,
and can be edited with any text editor.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 29

Sections and Settings

The configuration files are broken into various section, with the section name surrounded by square brackets. Section names should not contain spaces,
and are case sensitive. Inside of each section, you can assign values to various settings. In general, settings in one section are independent of values in
another section. Some settings take values such as true or false, while other settings have more specific settings. The syntax for assigning a value to a
setting is to write the setting name, an equals sign, and the value, like this:

[secti on- nane]
setting=true

[anot her _secti on]

setting=fal se
setting2=true

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 30

Objects

Some Asterisk configuration files also create objects. The syntax for objects is slightly different than for settings. To create an object, you specify the type of
object, an arrow formed by the equals sign and a greater-than sign (=>), and the settings for that object.

[section- nane]
sonme_obj ect => settings

Confused by Object Syntax?
In order to make life easier for newcomers to the Asterisk configuration files, the developers have made it so that you can also create objects
with an equal sign. Thus, the two lines below are functionally equivalent.

sone_obj ect => settings
sone_obj ect =set ti ngs

It is common to see both versions of the syntax, especially in online Asterisk documentation and examples. This book, however, will denote
objects by using the arrow instead of the equals sign.

[section- nane]
| abel 1=val uel
| abel 2=val ue2
obj ect1 => nanel

| abel 1=val ue0
| abel 3=val ue3
obj ect 2 => nane2

In this example, objectl inherits both labell and label2. It is important to note that object2 also inherits label2, along with labell (with the new overridden
value value0) and label3.

In short, objects inherit all the settings defined above them in the current section, and later settings override earlier settings.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 31

Comments

We can (and often do) add comments to the Asterisk configuration files. Comments help make the configuration files easier to read, and can also be used
to temporarily disable certain settings.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 32

Comments on a Single Line

Single-line comments begin with the semicolon (;) character. The Asterisk configuration parser treats everything following the semicolon as a comment. To

expand on our previous example:

[section- nane]
setting=true

[anot her _secti on]

setting=false ; this is a coment

. this entire line is a coment

; awesone=t r ue

; the semi colon on the Iine above nakes it a
; comment, disabling the setting

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 33

Block Comments

Asterisk also allows us to create block comments. A block comment is a comment that begins on one line, and continues for several lines. Block comments
begin with the character sequence

and continue across multiple lines until the character sequence

is encountered. The block comment ends immediately after --; is encountered.

[section- nane]

setting=true

;-- this is a block conment that begins on this line
and continues across nmultiple lines, until we

get to here --;

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 34

Using The include and exec Constructs

There are two other constructs we can use within our configuration files. They are #include and #exec.

The #include construct tells Asterisk to read in the contents of another configuration file, and act as though the contents were at this location in this
configuration file. The syntax is #include filename, where filename is the name of the file you'd like to include. This construct is most often used to break a
large configuration file into smaller pieces, so that it's more manageable.

The #exec takes this one step further. It allows you to execute an external program, and place the output of that program into the current configuration file.
The syntax is #exec program, where program is the name of the program you'd like to execute.

Enabling #exec Functionality

The #exec construct is not enabled by default, as it has some risks both in terms of performance and security. To enable this functionality, go to
the asterisk.conf configuration file (by default located in /etc/asterisk) and set execincludes=yes in the [options] section. By default both the [
options] section heading and the execincludes=yes option have been commented out, you you'll need to remove the semicolon from the
beginning of both lines.

Let's look at example of both constructs in action.

[section-nane]

setting=true

#i ncl ude ot herconfi g. conf ; include another configuration file
#exec ot her program ; include output of otherprogram

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 35

Adding to an existing section

If you want to add settings to an existing section of a configuration file (either later in the file, or when using the #include and #exec constructs), add a plus
sign in parentheses after the section heading, as shown below:

[section- nane]
settingl=val uel

[section-nane] (+)
setting2=val ue2

This example shows that the setting2 setting was added to the existing section of the configuration file.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 36

Templates

Another construct we can use within most Asterisk configuration files is the use of templates. A template is a section of a configuration file that is only used
as a base (or template, as the name suggests) to create other sections from.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 37

Template Syntax
To define a section as a template, place an exclamation mark in parentheses after the section heading, as shown in the example below.

[tenpl ate-nane] (!)
setting=val ue

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

38

Using Templates

To use a template when creating another section, simply put the template name in parentheses after the section heading name, as shown in the example
below. If you want to inherit from multiple templates, use commas to separate the template names).

[tenpl at e- nane] (!)
setting=val ue

[tenpl ate-2] (!)
setting2=val ue2

[section-nane] (tenpl at e- nane, t enpl at e- 2)
setting3=val ue3

The newly-created section will inherit all the values and objects defined in the template(s), as well as any new settings or objects defined in the
newly-created section. The settings and objects defined in the newly-created section override settings or objects of the same name from the templates.
Consider this example:

[test-one] (!)

perm t=192. 168. 0. 2
host =al pha. exanpl e. com
deny=192.168.0. 1

[test-two] (!)

perm t=192. 168. 1. 2

host =br avo. exanpl e. com
deny=192.168.1.1

[test-three] (test-one,test-two)
pernmit=192.168.3. 1
host =char | i e. exanpl e. com

The [test-three] section will be processed as though it had been written in the following way:

[test-three]
pernit=192. 168. 0. 2

host =al pha. exanpl e. com
deny=192.168.0.1

perm t=192. 168. 1. 2

host =br avo. exanpl e. com
deny=192.168.1.1
pernmit=192.168. 3.1

host =char | i e. exanpl e. com

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 39

Basic PBX Functionality

In this section, we're going to guide you through the basic setup of a very primitive PBX. After you finish, you'll have a basic PBX with two phones that can
dial each other. In later modules, we'll go into more detail on each of these steps, but in the meantime, this will give you a basic system on which you can
learn and experiement.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 40

The Most Basic PBX

While it won't be anything to brag about, this basic PBX that you will build from Asterisk will help you learn the fundamentals of configuring Asterisk. For this
exercise, we're going to assume that you have access to two phones which speak the SIP voice-over-IP protocol. There are a wide variety of SIP phones
available in many different shapes and sizes, and if your budget doesn't allow for you to buy phones, feel free to use a free soft phone. Soft phones are
simply computer programs which run on your computer and emulate a real phone, and communicate with other devices across your network, just like a real

voice-over-1P phone would.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 41

Creating SIP Accounts

In order for our two phones to communicate with each other, we need to configure an account for each phone in the channel driver which corresponds to
the protocol they'll be using. Since both the phones are using the SIP protocol, we'll configure accounts in the SIP channel driver configuration file, called si
p.conf. (This file resides in the Asterisk configuration directory, which is typically /etc/asterisk.) Let's name your phones Alice and Bob, so that we can
easily differentiate between them.

Open sip.conf with your favorite text editor, and spend a minute or two looking at the file. (Don't let it overwhelm you — the sample sip.conf has a lot of
data in it, and can be overwhelming at first glance.) Notice that there are a couple of sections at the top of the configuration, such as [general] and
[authentication], which control the overall functionality of the channel driver. Below those sections, there are sections which correspond to SIP accounts on
the system. Scroll to the bottom of the file, and add a section for Alice and Bob. You'll need to choose your own unique password for each account, and
change the permit line to match the settings for your local network.

[denp-al i ce]

type=friend

host =dynami ¢

secret=verysecretpassword ; put a strong, unique password here instead
cont ext =users

deny=0.0.0.0/0

pernit=192. 168. 5. 0/ 255. 255. 255. 0 ; replace with your network settings

[denmp- bob]

type=friend

host =dynami ¢

secr et =ot her secret password ; put a strong, unique password here instead
cont ext =users

deny=0.0.0.0/0

pernit=192. 168. 5. 0/ 255. 255. 255. 0 ; replace with your network settings

0)

Be Serious About Account Security

We can't stress enough how important it is for you to pick a strong password for all accounts on Asterisk, and to only allow access from trusted
networks. Unfortunately, we've found many instances of people exposing their Asterisk to the internet at large with easily-guessable passwords,
or no passwords at all. You could be at risk of toll fraud, scams, and other malicious behavior.

For more information on Asterisk security and how you can protect yourself, check out http://www.asterisk.org/security/webinar/.

After adding the two sections above to your sip.conf file, go to the Asterisk command-line interface and run the sip reload command to tell Asterisk to
re-read the sip.conf configuration file.

server*CLI > sip rel oad
Rel oading SIP

server*CLI >

Reloading Configuration Files

Don't forget to reload the appropriate Asterisk configuration files after you have made changes to them.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 42

http://www.asterisk.org/security/webinar/

Registering Phones to Asterisk

The next step is to configure the phones themselves to communicate with Asterisk. The way we have configured the accounts in the SIP channel driver,
Asterisk will expect the phones to register to it. Registration is simply a mechanism where a phone communicates "Hey, I'm Bob's phone... here's my
username and password. Oh, and if you get any calls for me, I'm at this particular IP address."

Configuring your particular phone is obviously beyond the scope of this guide, but here are a list of common settings you're going to want to set in your
phone, so that it can communicate with Asterisk:

® Registrar/Registration Server - The location of the server which the phone should register to. This should be set to the IP address of
your Asterisk system.

® *SIP User Name/Account Name/Address - *The SIP username on the remote system. This should be set to demo-alice on one phone
and demo-bob on the other. This username corresponds directly to the section name in square brackets in sip.conf.

® SIP Authentication User/Auth User - On Asterisk-based systems, this will be the same as the SIP user name above.

® Proxy Server/Outbound Proxy Server - This is the server with which your phone communicates to make outside calls. This should be
set to the IP address of your Asterisk system.

You can tell whether or not your phone has registered successfully to Asterisk by checking the output of the sip show peers command at the Asterisk CLI.
If the Host column says (Unspecified), the phone has not yet registered. On the other hand, if the Host column contains an IP address and the Dyn colum
n contains the letter D, you know that the phone has successfully registered.

server*CLI > sip show peers

Nane/ user nane Host Dyn NAT ACL Port Status
denp-al i ce (Unspeci fi ed) D A 5060 Unnoni t or ed
deno- bob 192. 168. 5. 105 D A 5060 Unnoni t or ed

2 sip peers [Mnitored: 0 online, 0 offline Unnonitored: 2 online, 0 offline]

In the example above, you can see that Alice's phone has not registered, but Bob's phone has registered.

@ Debugging SIP Registrations

If you're having troubles getting a phone to register to Asterisk, make sure you watch the Asterisk CLI with the verbosity level set to at least three
while you reboot the phone. You'll likely see error messages indicating what the problem is, like in this example:

NOTI CE[22214] : chan_si p. c: 20824 handl e_request _regi ster: Registration from'"Alice"
<si p: denp-al i ce@92. 168.5.50>' failed for '192.168.5.103' - Wong password

As you can see, Asterisk has detected that the password entered into the phone doesn't match the secret setting in the [demo-alice] section of
sip.conf.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 43

Creating Dialplan Extensions

The last things we need to do to enable Alice and Bob to call each other is to configure a couple of extensions in the dialplan.

0)

What is an Extension?

When dealing with Asterisk, the term extension does not represent a physical device such as a phone. An extension is simply a set of actions in
the dialplan which may or may not write a physical device. In addition to writing a phone, an extensions might be used for such things
auto-attendant menus and conference bridges. In this guide we will be careful to use the words phone or device when referring to the physical
phone, and extension when referencing the set of instructions in the Asterisk dialplan.

Let's take a quick look at the dialplan, and then add two extensions.

Open extensions.conf, and take a quick look at the file. Near the top of the file, you'll see some general-purpose sections named [general] and [globals].
Any sections in the dialplan beneath those two sections is known as a context. The sample extensions.conf file has a number of other contexts, with
names like [demo] and [default].

We'll cover contexts more in Dialplan Fundamentals, but for now you should know that each phone or outside connection in Asterisk points at a single
context. If the dialed extension does not exist in the specified context, Asterisk will reject the call.

Go to the bottom of your extensions.conf file, and add a new context named [users].

Naming Your Dialplan Contexts

There's nothing special about the name users for this context. It could have been named strawberry_milkshake, and it would have behaved exactly the
same way. It is considered best practice, however, to name your contexts for the types of extensions that are contained in that context. Since this context
contains extensions for the users of our PBX system, we'll call our context users.

Underneath that context name, we'll create an extesion numbered 6001 which attempts to ring Alice's phone for twenty seconds, and an extension 6002 wh
ich attempts to rings Bob's phone for twenty seconds.

[users]
ext en=>6001, 1, Di al (SI P/ deno-al i ce, 20)
ext en=>6002, 1, Di al (SI P/ deno- bob, 20)

After adding that section to extensions.conf, go to the Asterisk command-line interface and tell Asterisk to reload the dialplan by typing the command dial
plan reload. You can verify that Asterisk successfully read the configuration file by typing dialplan show users at the CLI.

server*CLI > di al pl an show users

[Context 'users' created by 'pbx_config']
‘6001 => 1. Dial (SIP/denp-alice, 20) [pbx_confi g]
' 6002" => 1. Dial (SI P/ deno-bob, 20) [pbx_confi g]

-= 2 extensions (2 priorities) in 1 context. =-

Now we're ready to make a test call!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 44

Making a Phone Call

At this point, you should be able to pick up Alice's phone and dial extension 6002 to call Bob, and dial 6001 from Bob's phone to call Alice. As you make a
few test calls, be sure to watch the Asterisk command-line interface (and ensure that your verbosity is set to a value three or higher) so that you can see

the messages coming from Asterisk, which should be similar to the ones below:

server*CLI > - Executing [6002@isers: 1] Dial ("SI P/ denp-alice-00000000", "SIP/denmp-bob,20") in new stack

- Called deno-bob
-- S| P/ denp- bob- 00000001 is ringing
- S| P/ denp- bob- 00000001 answered S| P/ denp-al i ce-00000000
-- Native bridging SIP/ denp-alice-00000000 and S| P/ denp-bob- 00000001
== Spawn extension (users, 6002, 1) exited non-zero on 'Sl P/ deno-alice-00000000"

As you can see, Alice called extension 6002 in the [users] context, which in turn used the Dial application to call Bob's phone. Bob's phone rang, and then
answered the call. Asterisk then bridged the two calls (one call from Alice to Asterisk, and the other from Asterisk to Bob), until Alice hung up the phone.

At this

point, you have a very basic PBX. It has two extensions which can dial each other, but that's all. Before we move on, however, let's review a few

basic troubleshooting steps that will help you be more successful as you learn about Asterisk.

©

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Basic PBX Troubleshooting
The most important troubleshooting step is to set your verbosity level to three (or higher), and watch the command-line interface for errors or

warnings as calls are placed.

To ensure that your SIP phones are registered, type sip show peers at the Asterisk CLI.

To see which context your SIP phones will send calls to, type sip show users.

To ensure that you've created the extensions correctly in the [users] context in the dialplan, type dialplan show users.

To see which extension will be executed when you dial extension 6002, type dialplan show 6002@users.

45

Sound Prompt Searching based on Channel Language

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

46

Dialplan Fundamentals

The dialplan is essential to the operation of any successful Asterisk system. In this module, we'll help you learn the fundamental components of the Asterisk
dialplan, and how to combine them to begin scripting your own dialplan. We'll also add voice mail and a dial-by-name directory features to your dialplan.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 47

Contexts, Extensions, and Priorities

The dialplan is organized into various sections, called contexts. Contexts are the basic organizational unit within the dialplan, and as such, they keep
different sections of the dialplan independent from each other. We'll use contexts to enforce security boundaries between the various parts of our dialplan,
as well as to provide different classes of service to groups of users.

The syntax for a context is exactly the same as any other section heading in the configuration files, as explained in Section 206.2.1. Sections and Settings.
Simply place the context name in square brackets. For example, here is the context we defined in the previous module:

[users]

Within each context, we can define one or more extensions. As explained in the previous module, an extension is simply a named set of actions. Asterisk
will perform each action, in sequence, when that extension number is dialed. The syntax for an extension is:

exten => nunber, priority,application([paraneter[, paranmeter2...]])

As an example, let's review extension 6001 from the previous module. It looks like:

exten => 6001, 1, Di al (SI P/ denp-ali ce, 20)

In this case, the extension number is 6001, the priority number is 1, the application is Dial(), and the two parameters to the application are SIP/demo-alice
and 20.

Within each extension, there must be one or more priorities. A priority is simply a sequence number. The first priority on an extension is executed first.
When it finishes, the second priority is executed, and so forth.

Priority numbers
Priority numbers must begin with 1, and must increment sequentially. If Asterisk can't find the next priority number, it will terminate the call. We
call this auto-fallthrough. Consider the example below:

exten => 6123, 1, do sonething
exten => 6123, 2,do sonething el se
exten => 6123, 4, do sonething different

In this case, Asterisk would execute priorites one and two, but would then terminate the call, because it couldn't find priority number three.

Priority number can also be simplied by using the letter n in place of the priority numbers greater than one. The letter n stands for next, and when Asterisk
sees priority n it replaces it in memory with the previous priority number plus one. Note that you must still explicitly declare priority number one.

exten => 6123, 1, do sonet hi ng
exten => 6123, n,do sonething el se
exten => 6123, n,do sonething different

You can also assign a label (or alias) to a particular priority number by placing the label in parentheses directly after the priority number, as shown below.
Labels make it easier to jump back to a particular location within the extension at a later time.

exten => 6123, 1, do sonething
exten => 6123, n(repeat), do sonething el se
exten => 6123, n, do sonething different

Here, we've assigned a label named repeat to the second priority.

Included in the Asterisk 1.6.2 branch (and later) there is a way to avoid having to repeat the extension name/number or pattern using the same => prefix.

exten => _1NXXNXXXXXX, 1, do sonet hi ng
sane => n(repeat), do sonething el se
sane => n,do sonething different

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 48

Applications

Each priority in the dialplan calls an application. An application does some work on the channel, such as answering a call or playing back a sound prompt.
There are a wide variety of dialplan applications available for your use. For a complete list of the dialplan applications available to your installation of

Asterisk, type core show applications at the Asterisk CLI.
Most applications take one or more parameters, which provide additional information to the application or change its behavior. Parameters should be

separated by commas.

Syntax for Parameters
You'll often find examples of Asterisk dialplan code online and in print which use the pipe character or vertical bar character (|) between

parameters, as shown in this example:

exten => 6123, 1, applicati on(one|two|three)

This is a deprecated syntax, and will no longer work in newer versions of Asterisk. Simply replace the pipe character with a comma, like this:

exten => 6123, 1, application(one,two,three)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 49

Answer, Playback, and Hangup Applications

As its name suggests, the Answer() application answers an incoming call. The Answer() application takes a delay (in milliseconds) as its first parameter.
Adding a short delay is often useful for ensuring that the remote endpoing has time to begin processing audio before you play a sound prompt. Otherwise,
you may not hear the very beginning of the prompt.

Knowing When to Answer a Call
When you're first learning your way around the Asterisk dialplan, it may be a bit confusing knowing when to use the Answer() application, and when not to.

If Asterisk is simply going to pass the call off to another device using the Dial() application, you probably don't want to call the answer the call first. If, on the
other hand, you want Asterisk to play sound prompts or gather input from the caller, it's probably a good idea to call the Answer() application before doing
anything else.

The Playback() application loads a sound prompt from disk and plays it to the caller, ignoring any touch tone input from the caller. The first parameter to
the dialplan application is the filename of the sound prompt you wish to play, without a file extension. If the channel has not already been answered, Playba
ck() will answer the call before playing back the sound prompt, unless you pass noanswer as the second parameter.

To avoid the first few milliseconds of a prompt from being cut off you can play a second of silence. For example, if the prompt you wanted to play was
hello-world which would look like this in the dialplan:

exten => 1234, 1, Pl ayback(hel | o-worl d)

You could avoid the first few seconds of the prompt from being cut off by playing the silence/1 file:

exten => 1234, 1, Pl ayback(sil ence/ 1)
exten => 1234, n, Pl ayback(hel | o-wor | d)

Alternatively this could all be done on the same line by separating the filenames with an ampersand (&):

exten => 1234, 1, Pl ayback(sil ence/ 1&hel | o-wor | d)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 50

Early Media and the Progress Application

Many dialplan applications within Asterisk support a common VOIP feature known as early media. Early Media is most frequently associated with the SIP
channel, but it is also a feature of other channel drivers such as H323. In simple situations, any call in Asterisk that is going to involve audio should invoke
either Progress() or Answer().

By making use of the progress application, an phone call can be made to play audio before answering a call or even without ever even intending to answer
the full call.

Simple Example involving playback:

exten => 500, 1, Progress()

exten => 500, n, Wait(1)

exten => 500, n, Pl ayback(WeAr eCl osedGoAway, noanswer)
exten => 500, n, Hangup()

In the example above, we start an early media call which waits for a second and then plays a rather rudely named message indicating that the requested
service has closed for whatever reason before hanging up. It is worth observing that the Playback application is called with the 'noanswer' argument.
Without that argument, Playback would automatically answer the call and then we would no longer be in early media mode.

Strictly speaking, Asterisk will send audio via RTP to any device that calls in regardless of whether Asterisk ever answers or progresses the call. It is
possible to make early media calls to some devices without ever sending the progress message, however this is improper and can lead to a myriad of
nasty issues that vary from device to device. For instance, in internal testing, there was a problem reported against the Queue application involving the
following extension:

exten => 500, 1, Queue(queuenane)

This is certainly a brief example. The queue application does not perform any sort of automatic answering, so at this point Asterisk will be sending the
phone audio packets, but it will not have formally answered the call or have sent a progress indication. At this point, different phones will behave differently.
In the case of the internal test, our Polycom Soundpoint IP 330 phone played nothing while our SNOM360 phone played audio until approximately one
minute into the call before it started ceaselessly generating a ring-back indication. There is nothing wrong with either of these phones... they are simply
reacting to an oddly formed SIP dialog. Obviously though, neither of these is ideal for a queue and the problem wouldn't have existed had Queue been
started after using the Progress application like below:

exten => 500, 1, Progress()
exten => 500, n, Queue(queuenane)

Getting the hang of when to use Progress and Answer can be a little tricky, and it varies greatly from application to application. If you want to be safe, you
can always just answer the calls and keep things simple, but there are a number of use cases where it is more appropriate to use early media, and most
people who actually need this feature will probably be aware of when it is necessary.

Applications which can use early media and do not automatically answer (incomplete list, please contribute):
SayAlpha/SayDigits/SayNumber/etc

Playback (conditionally)

MP3

MixMonitor

MorseCode

Echo

Queue

MusicOnHold

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 51

Exploring Sound Prompts

Asterisk comes with a wide variety of pre-recorded sound prompts. When you install Asterisk, you can choose to install both core and extra sound
packages in several different file formats. Prompts are also available in several languages. To explore the sound files on your system, simply find the
sounds directory (this will be /var/lib/asterisk/sounds on most systems) and look at the filenames. You'll find useful prompts ("Please enter the extension
of the person you are looking for..."), as well as as a number of off-the-wall prompts (such as "Weasels have eaten our phone system”, "The office has
been overrun with iguanas”, and "Try to spend your time on hold not thinking about a blue-eyed polar bear") as well.

@ Sound Prompt Formats
Sound prompts come in a variety of file formats, such as .wav and .ulaw files. When asked to play a sound prompt from disk, Asterisk plays the
sound prompt with the file format that can most easily be converted to the CODEC of the current call. For example, if the inbound call is using
the alaw CODEC and the sound prompt is available in .gsm and .ulaw format, Asterisk will play the .ulaw file because it requires fewer CPU
cycles to transcode to the alaw CODEC.
You can type the command core show translation at the Asterisk CLI to see the transcoding times for various CODECSs. The times reported (in
Asterisk 1.6.0 and later releases) are the number of microseconds it takes Asterisk to transcode one second worth of audio. These times are
calculated when Asterisk loads the codec modules, and often vary slightly from machine to machine. To perform a current calculation of
translation times, you can type the command core show translation recalc 60.

How Asterisk Searches for Sound Prompts Based on Channel Language

Each channel in Asterisk can be assigned a language by the channel driver. The channel's language code is split, piece by piece (separated by
underscores), and used to build paths to look for sound prompts. Asterisk then uses the first file that is found.

This means that if we set the language to en_GB_female_BT, for example, Asterisk would search for files in:
.../sounds/en/GB/female/BT

.../sounds/en/GB/female

.../sounds/en/GB

.../sounds/en

...Isounds

This scheme makes it easy to add new sound prompts for various language variants, while falling back to a more general prompt if there is no prompt
recorded in the more specific variant.

The Hangup() application hangs up the current call. While not strictly necessary due to auto-fallthrough (see the note on Priority numbers above), in
general we recommend you add the Hangup() application as the last priority in any extension.

Now let's put Answer(), Playback(), and Hangup() together to play a sample sound file. Place this extension in your [docs:users] context:

exten => 6000, 1, Answer (500)
exten => 6000, n, Pl ayback(hel | o-wor | d)
exten => 6000, n, Hangup()

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 52

Dial Application

Now that you've learned the basics of using dialplan applications, let's take a closer look at the Dial() application that we used earlier in extensions 6001 an
d 6002. Dial() attempts to ring an external device, and if the call is answered it bridges the two channels together and does any necessary protocol or
CODEC conversion. It also handles call progress responses (busy, no-answer, ringing).

Dial() and the Dialplan
Please note that if the Dial() application successfully bridges two channels together, that the call does not progress in the dialplan. The call will
only continue on to the next priority if the Dial() application is unable to bridge the calling channel to the dialed device.

The Dial() application takes four parameters:

1. Devices

® Alist of the device(s) you want to call. Devices are specified as technology or channel driver, a forward slash, and the device or
account name. For example, SIP/demo-alice would use the SIP channel driver to call the device specified in the demo-alice sec
tion of sip.conf. Devices using the IAX2 channel driver take the form of IAX2/demo-george, and DAHDI channels take the form
of DAHDI/1.

® When calling through a device (such as a gateway) or service provider to reach another number, the syntax is technology/devic
e/number such as SIP/my_provider/5551212 or DAHDI/4/5551212.

® To dial multiple devices at once, simply concatenate the devices together whith the ampersand character (&). The first device to
answer will get bridged with the caller, and the other endpoints will stop ringing.

* exten => 6003, 1, Di al (SI P/ deno- al i ce&SI P/ denp- bob, 30)

2. Timeout
® The number of seconds to allow the device(s) to ring before giving up and moving on to the next priority in the extension.
3. Options
® There are dozens of options that you can set on the outbound call, including call screening, distinctive ringing and more. Type co
re show application dial at the Asterisk CLI for a complete list of all available options. If you want to specify multiple options,
simply concatenate them together. For example, if you want to use both the *m*and H options, you would set mH as the options
parameter.
4. URL
® The fourth parameter is a URL that will be sent to the endpoint. Few endpoints do anything with the URL, but there are a few
(softphones mostly) that do act on the URL.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 53

Adding Voice Mail to Dialplan Extensions
Adding voicemail to the extensions is quite simple. The Asterisk voicemail module provides two key applications for dealing with voice mail. The first,

named VoiceMail(), allows a caller to leave a voice mail message in the specified mailbox. The second, called VoiceMailMain(), allows the mailbox owner
to retrieve their messages and change their greetings.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 54

VoiceMail Application
The VoiceMail() applications takes two parameters:

1. Mailbox
® This parameter specifies the mailbox in which the voice mail message should be left. It should be a mailbox number and a voice

mail context concatenated with an at-sign (@), like 6001@default. (Voice mail boxes are divided out into various voice mail
context, similar to the way that extensions are broken up into dialplan contexts.) If the voice mail context is omitted, it will default
to the default voice mail context.

2. Options
® One or more options for controlling the mailbox greetings. The most popular options include the u option to play the unavailable

message, the b option to play the busy message, and the s option to skip the system-generated instructions.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 55

VoiceMailMain Application
The VoiceMailMain() application allows the owner of a voice mail box to retrieve their messages, as well as set mailbox options such as greetings and
their PIN number. The VoiceMailMain() application takes two parameters:

1. Mailbox - This parameter specifies the mailbox to log into. It should be a mailbox number and a voice mail context, concatenated with an
at-sign (@), like 6001@default. If the voice mail context is omitted, it will default to the default voice mail context. If the mailbox number is

omitted, the system will prompt the caller for the mailbox number.
Options - One or more options for controlling the voicemail system. The most popular option is the s option, which skips asking for the

PIN number

(D Direct Access to Voice mail
Please exercise extreme caution when using the s option! With this option set, anyone which has access to this extension can retrieve voicemail

messages without entering the mailbox passcode.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 56

Configuring Voice Mail Boxes

Now that we've covered the two main voice mail applications, let's look at the voicemail configuration. Voice mail options and mailboxes are configured in
the voicemail.conf configuration file. This file has three major sections:

The [general] section

Near the top of voicemail.conf, you'll find the [general] section. This section of the configuration file controls the general aspects of the voicemail system,
such as the maximum number of messages per mailbox, the maximum length of a voicemail message, and so forth. Feel free to look at the sample voicem
ail.conf file for more details about the various settings.

The [zonemessages] section

The [zonemessages] section is used to define various timezones around the world. Each mailbox can be assigned to a particular time zone, so that times
and dates are announced relative to their local time. The time zones specified in this section also control the way in which times and dates are announced,
such as reading the time of day in 24-hour format.

Voice Mail Contexts

After the [general] and [zonemessages] sections, any other bracketed section is a voice mail context. Within each context, you can define one or more
mailbox. To define a mailbox, we set a mailbox number, a PIN, the mailbox owner's name, the primary email address, a secondary email address, and a list
of mailbox options (separated by the pipe character), as shown below:

mai | box=>pi n, ful | nane, emai| address,short enail address, nail box options

By way of explanation, the short email address is an email address that will receive shorter email notifications suitable for mobile devices such as cell
phones and pagers. It will never receive attachments.

To add voice mail capabilities to extensions 6001 and 6002, add these three lines to the bottom of voicemail.conf.

[vm denp]

6001 => 8762, Alice

Jones, al i ce@xanpl e. com al i ce2@xanpl e. com attach=no|tz=central | maxnsg=10
6002 => 9271, Bob Smit h, bob@xanpl e. com bob2@xanpl e. com attach=yes|tz=eastern

Now that we've defined the mailboxes, we can go into the Asterisk CLI and type voicemail reload to get Asterisk to reload the voicemail.conf file. We can
also verify that the new mailboxes have been created by typing voicemail show users.

server*CLI > voi cenai | rel oad
Rel oadi ng voi cenai| configuration...
server*CLI > voi cenai | show users

Cont ext Moox User Zone NewMsg
def aul t general New User 0
def aul t 1234 Exanpl e Mail box 0
ot her 1234 Conpany2 User 0
vm deno 6001 Alice Jones central 0
vm dermo 6002 Bob Snmith eastern 0

5 voi cenni | users configured.

Now that we have mailboxes defined, let's add a priority to extensions 6001 and 6002 which will allow callers to leave voice mail in their respective
mailboxes. We'll also add an extension 6500 to allow Alice and Bob to check their voicemail messages. Please modify your [users] context in extensions.
conf to look like the following:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 57

[users]

exten => 6000, 1, Answer (500)

exten => 6000, n, Pl ayback(hel | o-wor| d)
exten => 6000, n, Hangup()

exten => 6001, 1, Di al (SI P/ denp-al i ce, 20)
exten => 6001, n, Voi ceMai | (6001@ m deno, u)

exten => 6002, 1, Di al (S| P/ denp- bob, 20)
exten => 6002, n, Voi ceMai | (6002@m deno, u)

exten => 6500, 1, Answer (500)
exten => 6500, n, Voi ceMai | Mai n(@ m deno)

Reload the dialplan by typing dialplan reload at the Asterisk CLI. You can then test the voice mail system by dialing from one phone to the other and
waiting twenty seconds. You should then be connected to the voicemail system, where you can leave a message. You should also be able to dial extension
6500 to retrieve the voicemail message. When prompted, enter the mailbox number and PIN number of the mailbox.

While in the VoiceMainMain() application, you can also record the mailbox owner's name, unavailable greeting, and busy greeting by pressing 0 at the
voicemail menu. Please record at least the name greeting for both Alice and Bob before continuing on to the next section.

Go into lots of detail about the voicemail interface? How to move between messages, move between folders, forward messages, etc?

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 58

Directory Application
The next application we'll cover is named Directory(), because it presents the callers with a dial-by-name directory. It asks the caller to enter the first few
digits of the person's name, and then attempts to find matching names in the specified voice mail context in voicemail.conf. If the matching mailboxes

have a recorded name greeting, Asterisk will play that greeting. Otherwise, Asterisk will spell out the person's name letter by letter.

Directory([voicenmil _context,[dial pl an_context,[options]]])

The Directory() application takes three parameters:

voicemail_context

This is the context within voicemail.conf in which to search for a matching directory entry. If not specified , the [docs:default] context will be searched.

dialplan_context

When the caller finds the directory entry they are looking for, Asterisk will dial the extension matching their mailbox in this context.

options

A set of options for controlling the dial-by-name directory. Common options include f for searching based on first name instead of last name and e to read
the extension number as well as the name.

@ Directory() Options
To see the complete list of options for the Directory() application, type core show application Directory at the Asterisk CLI.

Let's add a dial-by-name directory to our dialplan. Simply add this line to your [docs:users] context in extensions.conf:

exten => 6501, 1, Di rectory(vm deno, users, ef)

Now you should be able to dial extension 6501 to test your dial-by-name directory.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 59

Auto-attendant and IVR Menus

In this section, we'll cover the how to build voice menus, often referred to as auto-attedants and IVR menus. IVR stands for Interactive Voice Response,
and is used to describe a system where a caller navigates through a system by using the touch-tone keys on their phone keypad.

When the caller presses a key on their phone keypad, the phone emits two tones, known as DTMF tones. DTMF stands for Dual Tone Multi-Frequency.
Asterisk recognizes the DTMF tones and responds accordingly. For more information on DTMF tones, see Section 440.3. DTMF Dialing.

Let's dive in and learn how to build IVR menus in the Asterisk dialplan!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

60

https://wiki/display/~mdavenport/440.3.+DTMF+Dialing

Background and WaitExten Applications

The Background() application plays a sound prompt, but listens for DTMF input. Asterisk then tries to find an extension in the current dialplan context that
matches the DTMF input. If it finds a matching extension, Asterisk will send the call to that extension.

The Background() application takes the name of the sound prompt as the first parameter just like the Playback() application, so remember not to include the
file extension.

Multiple Prompts
If you have multiple prompts you'd like to play during the Background() application, simply concatenate them together with the ampersand (&)
character, like this:

exten => 6123, 1, Backgr ound(pr onpt 1&pr onpt 2&pr onpt 3)

One problems you may encounter with the Background() application is that you may want Asterisk to wait a few more seconds after playing the sound
prompt. In order to do this, you can call the WaitExten() application. You'll usually see the WaitExten() application called immediately after the Backgroun
d() application. The first parameter to the WaitExten() application is the number of seconds to wait for the caller to enter an extension. If you don't supply
the first parameter, Asterisk will use the built-in response timeout (which can be modified with the TIMEOUT() dialplan function).

[aut o_attendant]
exten => start, 1, Verbose(2, 1 ncomng call from ${CALLERI D(all)})
same => n, Pl ayback(sil ence/1)
same => n, Background(pr onpt 1&pr onpt 2&pr onpt 3)
same => n, Wi t Ext en(10)
same => n, Goto(timeout-handl er, 1)

exten => tinmeout-handler, 1)
sane => n, Di al (${ GLOBAL(OPERATOR) }, 30)
sane => n, Voi cenui | (operat or @ef aul t, ${| F($[${ DI ALSTATUS} = BUSY] ?b: u)})
same => n, Hangup()

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 61

Goto Application and Priority Labels

Before we create a simple auto-attendant menu, let's cover a couple of other useful dialplan applications. The Goto() application allows us to jump from

one position in the dialplan to another. The parameters to the Goto() application are slightly more complicated than with the other applications we've looked

at so far, but don't let that scare you off.

The Goto() application can be called with either one, two, or three parameters. If you call the Goto() application with a single parameter, Asterisk will jump
to the specified priority (or its label) within the current extension. If you specify two parameters, Asterisk will read the first as an extension within the current

context to jump to, and the second parameter as the priority (or label) within that extension. If you pass three parameters to the application, Asterisk will

assume they are the context, extension, and priority (respectively) to jump to.

[StartingCont ext]

exten => 100, 1, Got o(nbnkeys)
same => n, NoOp(We skip this)
same => n(nonkeys), Pl ayback(tt-nmonkeys)
same => n, Hangup()

exten => 200, 1, Goto(start,1) ; play tt-weasels then tt-nonkeys

exten => 300, 1, Goto(start, nonkeys) ; only play tt-nonkeys

exten => 400, 1, Got o(Junpi ngCont ext,start, 1) ; play hello-world

exten => start, 1, NoOp()
same => n, Pl ayback(tt-weasel s)
same => n(nonkeys), Pl ayback(tt-nonkeys)

[Junpi ngCont ext]

exten => start, 1, NoOp()
same => n, Pl ayback(hel | o-worl d)
sanme => n, Hangup()

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

62

SayDigits, SayNumber, SayAlpha, and SayPhonetic Applications

While not exactly related to auto-attendant menus, we'll introduce some applications to read back various pieces of information back to the caller. The Say
Digits() and SayNumber() applications read the specified number back to caller. To use the SayDigits() and SayNumber() application simply pass it the
number you'd like it to say as the first parameter.

The SayDigits() application reads the specified number one digit at a time. For example, if you called SayDigits(123), Asterisk would read back "one two
three". On the other hand, the SayNumber() application reads back the number as if it were a whole number. For example, if you called SayNumber(123)
Asterisk would read back "one hundred twenty three".

The SayAlpha() and SayPhonetic() applications are used to spell an alphanumeric string back to the caller. The SayAlpha() reads the specified string one
letter at a time. For example, SayAlpha(hello) would read spell the word "hello" one letter at a time. The SayPhonetic() spells back a string one letter at a
time, using the international phonetic alphabet. For example, SayPhonetic(hello) would read back "Hotel Echo Lima Lima Oscar".

We'll use these four applications to read back various data to the caller througout this guide. In the meantime, please feel free to add some sample
extensions to your dialplan to try out these applications. Here are some examples:

exten => 6592, 1, SayDi gi t s(123)
exten => 6593, 1, SayNunber (123)
exten => 6594, 1, SayAl pha(hel | 0)
exten => 6595, 1, SayPhoneti c(hel | 0)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 63

Creating a Simple IVR Menu

Let's go ahead and apply what we've learned about the various dialplan applications by building a very simple auto-attendant menu. It is common practice
to create an auto-attendant or IVR menu in a new context, so that it remains independant of the other extensions in the dialplan. Please add the following to
your dialplan (the extensions.conf file) to create a new demo-menu context. In this new context, we'll create a simple menu that prompts you to enter one
or two, and then it will read back what you're entered.

Sample Sound Prompts
Please note that the example below (and many of the other examples in this guide) use sound prompts that are part of the extra sounds
packages. If you didn't install the extra sounds earlier, now might be a good time to do that.

[deno- nenu]

exten => s, 1, Answer (500)
sane => n(l oop), Background(press- 1&or &r ess- 2)
same => n, Wi t Ext en()

exten => 1,1, Pl ayback(you-ent er ed)
sane => n, SayNunber (1)
same => n, Goto(s, | oop)

exten => 2,1, Pl ayback(you-ent er ed)

sane => n, SayNunber (2)
same => n, Goto(s, | oop)

Before we can use the demo menu above, we need to add an extension to the [docs:users] context to redirect the caller to our menu. Add this line to the [
docs:users] context in your dialplan:

exten => 6598, 1, Got o(deno- nenu, s, 1)

Reload your dialplan, and then try dialing extension 6598 to test your auto-attendant menu.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 64

Handling Special Extensions

We have the basics of an auto-attendant created, but now let's make it a bit more robust. We need to be able to handle special situations, such as when
the caller enters an invalid extension, or doesn't enter an extension at all. Asterisk has a set of special extensions for dealing with situations like there. They
all are named with a single letter, so we recommend you don't create any other extensions named with a single letter. The most common special
extensions include:

i the invalid entry extension

If Asterisk can't find an extension in the current context that matches the digits dialed during the Background() or WaitExten() applications, it will send the
call to the i extension. You can then handle the call however you see fit.

t: the reponse timeout extension

When the caller waits too long before entering a response to the Background() or WaitExten() applications, and there are no more priorities in the current
extension, the call is sent to the t extension.

s: the start extension
When an analog call comes into Asterisk, the call is sent to the s extension. The s extension is also used in macros.

Please note that the s extension is not a catch-all extension. It's simply the location that analog calls and macros begin. In our example above, it simply
makes a convenient extension to use that can't be easily dialed from the Background() and WaitExten() applications.

h: the hangup extension

When a call is hung up, Asterisk executes the h extension in the current context. This is typically used for some sort of clean-up after a call has been
completed.

o: the operator extension

If a caller presses the zero key on their phone keypad while recording a voice mail message, and the o extension exists, the caller will be redirected to the
0 extension. This is typically used so that the caller can press zero to reach an operator.

a: the assistant extension

This extension is similar to the o extension, only it gets triggered when the caller presses the asterisk (*) key while recording a voice mail message. This is
typically used to reach an assistant.

Let's add a few more lines to our [docs:demo-menu] context, to handle invalid entries and timeouts. Modify your [docs:demo-menu] context so that it
matches the one below:

[denp- nenu]

exten => s, 1, Answer (500)
sane => n(l oop), Background(press- 1&or &r ess- 2)
same => n, Wi t Ext en()

exten => 1,1, Pl ayback(you-ent er ed)
sane => n, SayNunber (1)
same => n, Goto(s, | oop)

exten => 2,1, Pl ayback(you-ent er ed)
sane => n, SayNunber (2)

same => n, Goto(s, | oop)

exten => i, 1, Playback(option-is-invalid)
sane => n, Goto(s, | oop)

exten => t, 1, Pl ayback(are-you-still-there)
same => n, Goto('s, | oop)

Now dial your auto-attendant menu again (by dialing extension 6598), and try entering an invalid option (such as 3) at the auto-attendant menu. If you
watch the Asterisk command-line interface while you dial and your verbosity level is three or higher, you should see something similar to the following:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 65

-- Executing [6598@sers: 1] Goto("SlP/deno-alice-00000008", "deno-nenu,s,1") in new stack

-- CGoto (deno-nenu,s, 1)

-- Executing [s@eno-nenu: 1] Answer (" Sl P/ denp- al i ce-00000008", "500") in new stack

-- Executing [s@enp-nenu: 2] BackG ound("SI P/ denp-alice-00000008", "press-1&or&press-2") in new stack
-- <SI P/ deno-al i ce-00000008> Pl ayi ng ' press-1.gsm (language 'en')

-- <8I P/ deno-al i ce-00000008> Pl aying 'or.gsni (language 'en')

-- <SI P/ deno-al i ce-00000008> Pl ayi ng ' press-2.gsm (language 'en')

-- Invalid extension '3 in context 'denp-menu’ on S|P/ denp-alice-00000008

-- Executing [i @eno-nenu: 1] Pl ayback(" Sl P/ deno-al i ce- 00000008", "option-is-invalid') in new stack

-- <8I P/ deno-al i ce-00000008> Playing 'option-is-invalid.gsm (language 'en')

-- Executing [i @eno-nenu: 2] Goto("SlI P/ denp-alice-00000008", "s,|oop") in new stack

-- CGoto (deno-nenu,s, 2)

-- Executing [s@eno-nmenu: 2] BackG ound("SI P/ deno-al i ce-00000008", "press-1&or&press-2") in new stack
-- <8I P/ deno-al i ce-00000008> Pl aying 'press-1.gsm (language 'en')

-- <SI P/ denp-al i ce-00000008> Pl aying 'or.gsni (language 'en')

-- <8I P/ deno-al i ce-00000008> Pl aying 'press-2.gsm (language 'en')

If you don't enter anything at the auto-attendant menu and instead wait approximately ten seconds, you should hear (and see) Asterisk go to the t extensio
n as well.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 66

Record Application

For creating your own auto-attendant or IVR menus, you're probably going to want to record your own custom prompts. An easy way to do this is with the R
ecord() application. The Record() application plays a beep, and then begins recording audio until you press the hash key (#) on your keypad. It then saves
the audio to the filename specified as the first parameter to the application and continues on to the next priority in the extension. If you hang up the call
before pressing the hash key, the audio will not be recorded. For example, the following extension records a sound prompt called custom-menu in the gs
m format in the en/ sub-directory, and then plays it back to you.

exten => 6597, 1, Answer (500)
same => n, Record(en/custom nmenu. gsn
sane => n, Wit (1)
same => n, Pl ayback(cust om nenu)
same => n, Hangup()

@ Recording Formats
When specifiying a file extension when using the Record() application, you must choose a file extension which represents one of the supported
file formats in Asterisk. For the complete list of file formats supported in your Asterisk installation, type core show file formats at the Asterisk
command-line interface.

You've now learned the basics of how to create a simple auto-attendant menu. Now let's build a more practical menu for callers to be able to reach Alice or
Bob or the dial-by-name directory.

Procedure 216.1. Building a Practical Auto-Attendant Menu

1. Add an extension 6599 to the [docs:users] context which sends the calls to a new context we'll build called [docs:day-menu]. Your
extension should look something like:
* ext en=>6599, 1, Got o(day- nenu, s, 1)

2. Add a new context called [docs:day-menu], with the following contents:
e [day- nenu]
exten => s, 1, Answer (500)
sane => n(l| oop), Background(cust om nenu)
same => n, Wi t Exten()

exten => 1,1, Goto(users, 6001, 1)
exten => 2,1, Goto(users, 6002, 1)

exten => 9,1, Directory(vm deno, users, fe)
exten => * 1, Voi ceMai | Mai n(@ m deno)

exten => i, 1, Playback(option-is-invalid)
sane => n, Goto(s, | oop)

exten => t, 1, Pl ayback(are-you-still-there)
sane => n, Goto(s, | oop)

1. Dial extension 6597 to record your auto-attendant sound prompt. Your sound prompt should say something like "Thank you for calling!
Press one for Alice, press two for Bob, or press 9 for a company directory". Press the hash key (#) on your keypad when you're finished
recording, and Asterisk will play it back to you. If you don't like it, simply dial extension 6597 again to re-record it.

2. Dial extension 6599 to test your auto-attendant menu.

In just a few lines of code, you've created your own auto-attendant menu. Feel free to experiment with your auto-attendant menu before moving on to the
next section.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 67

Dialplan Architecture

In this section, we'll begin adding structure to our dialplan. We'll begin by talking about variables and how to use them, as well as how to manipulate them.
Then we'll cover more advanced topics, such as pattern matching and using include statements to build classes of functionality.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 68

Variables

Variables are used in most programming and scripting languages. In Asterisk, we can use variables to simplify our dialplan and begin to add logic to the
system. A variable is simply a container that has both a name and a value. For example, we can have a variable named COUNT which has a value of
three. Later on, we'll show you how to route calls based on the value of a variable. Before we do that, however, let's learn a bit more about variables. The
names of variables are case-sensitive, so COUNT is different than Count and count. Any channel variables created by Asterisk will have names that are

completely upper-case, but for your own channels you can name them however you would like.

In Asterisk, we have two different types of variables: channel variables and global variables.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 69

Channel Variables Basics

Channel variables are variables that are set for the current channel (one leg of a bridged phone call). They exist for the lifetime of the channel, and then go
away when that channel is hung up. Channel variables on one particular channel are completely independent of channel variables on any other channels;
in other words, two channels could each have variables called COUNT with different values.

To assign a value to a channel variable, we use the Set() application. Here's an example of setting a variable called COUNT to a value of 3.

ext en=>6123, 1, Set (COUNT=3)

To retrieve the value of a variable, we use a special syntax. We put a dollar sign and curly braces around the variable name, like ${COUNT}

When Asterisk sees the dollar sign and curly braces around a variable name, it substitutes in the value of the variable. Let's look at an example with the Sa
yNumber() application.

ext en=>6123, 1, Set (COUNT=3)
ext en=>6123, n, SayNunber (${ COUNT})

In the second line of this example, Asterisk replaces the ${COUNT} text with the value of the COUNT variable, so that it ends up calling SayNumber(3).

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 70

Global Variables Basics

Global variables are variables that don't live on one particular channel — they pertain to all calls on the system. They have global scope. There are two
ways to set a global variable. The first is to declare the variable in the [globals] section of extensions.conf, like this:

[gl obal s]
MYGLOBALVAR=soneval ue

You can also set global variables from dialplan logic using the GLOBAL () dialplan function along with the Set() application. Simply use the syntax:

ext en=>6124, 1, Set (GLOBAL(MYGLOBALVAR) =soneval ue)

To retrieve the value of a global channel variable, use the same syntax as you would if you were retrieving the value of a channel variable.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

71

Manipulating Variables Basics

It's often useful to do string manipulation on a variable. Let's say, for example, that we have a variable named NUMBER which represents a number we'd
like to call, and we want to strip off the first digit before dialing the number. Asterisk provides a special syntax for doing just that, which looks like ${variable
[:skip[docs::length]}.

The optional skip field tells Asterisk how many digits to strip off the front of the value. For example, if NUMBER were set to a value of 98765, then ${NUMB
ER:2} would tell Asterisk to remove the first two digits and return 765.

If the skip field is negative, Asterisk will instead return the specified number of digits from the end of the number. As an example, if NUMBER were set to a
value of 98765, then ${NUMBER:-2} would tell Asterisk to return the last two digits of the variable, or 65.

If the optional length field is set, Asterisk will return at most the specified number of digits. As an example, if NUMBER were set to a value of 98765, then $
{NUMBER:0:3} would tell Asterisk not to skip any characters in the beginning, but to then return only the three characters from that point, or 987. By that
same token, ${NUMBER:1:3} would return 876.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 72

Variable Inheritance Basics

When building your Asterisk dialplan, it may be useful to have one channel inherit variables from another channel. For example, imagine that Alice's call
has a channel variable containing an account code, and you'd like to pass that variable on to Bob's channel when Alice's call gets bridged to Bob. We call

this variable inheritance. There are two levels of variable inheritance in Asterisk: single inheritance and multiple inheritance.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

73

Multiple Inheritance

Multiple inheritance means that a channel variable will be inherited by created (spawned) channels, and it will continue to be inherited by any other
channels created by the spawned channels. To set multiple inheritance on a channel, preface the variable name with two underscores when giving it a
value with the Set() application, as shown below.

ext en=>6123, 1, Set (__ACCOUNT=5551212)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 74

Single Inheritance

Single inheritance means that a channel variable will be inherited by created (spawned) channels, but not propogate from there to any other swawned
channels. To follow our example above, if Alice sets a channel variable with single inheritance and calls Bob, Bob's channel will inherit that channel
variable, but the channel variable won't get inherited by any channels that might get spawned by Bob's channel (if the call gets transferred, for example). To
set single inheritance on a channel, preface the variable name with an underscore when giving it a value with the Set() application, as shown below.

ext en=>6123, 1, Set (_ACCOUNT=5551212)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 75

Using the CONTEXT, EXTEN, PRIORITY, UNIQUEID, and CHANNEL Variables

Now that you've learned a bit about variables, let's look at a few of the variables that Asterisk automatically creates.

Asterisk creates channel variables named CONTEXT, EXTEN, and PRIORITY which contain the current context, extension, and priority. We'll use them in
pattern matching (below), as well as when we talk about macros in Section 308.10. Macros. Until then, let's show a trivial example of using ${EXTEN} to
read back the current extension number.

ext en=>6123, 1, SayNunber (${ EXTEN})

If you were to add this extension to the [docs:users] context of your dialplan and reload the dialplan, you could call extension 6123 and hear Asterisk read
back the extension number to you.

Another channel variable that Asterisk automatically creates is the UNIQUEID variable. Each channel within Asterisk receives a unique identifier, and that
identifier is stored in the UNIQUEID variable. The UNIQUEID is in the form of 1267568856.11, where 1267568856 is the Unix epoch, and 11 shows that
this is the eleventh call on the Asterisk system since it was last restarted.

Last but not least, we should mention the CHANNEL variable. In addition to a unique identifier, each channel is also given a channel name and that
channel name is set in the CHANNEL variable. A SIP call, for example, might have a channel name that looks like SIP/george-0000003b, for example.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 76

https://wiki/display/~mdavenport/308.10.+Macros

The Verbose and NoOp Applications

Asterisk has a convenient dialplan applications for printing information to the command-line interface, called Verbose(). The Verbose() application takes
two parameters: the first parameter is the minimum verbosity level at which to print the message, and the second parameter is the message to print. This
extension would print the current channel identifier and unique identifier for the current call, if the verbosity level is two or higher.

ext en=>6123, 1, Ver bose(2, The channel name is ${ CHANNEL})
ext en=>6123, n, Ver bose(2, The unique id is ${UN QUEI D})

The NoOp() application stands for "No Operation”. In other words, it does nothing. Because of the way Asterisk prints everything to the console if your
verbosity level is three or higher, however, the NoOp() application is often used to print debugging information to the console like the Verbose() does.
While you'll probably come across examples of the NoOp() application in other examples, we recommend you use the Verbose() application instead.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 77

The Read Application

The Read() application allows you to play a sound prompt to the caller and retrieve DTMF input from the caller, and save that input in a variable. The first
parameter to the Read() application is the name of the variable to create, and the second is the sound prompt or prompts to play. (If you want multiple
prompts, simply concatenate them together with ampersands, just like you would with the Background() application.) There are some additional
parameters that you can pass to the Read() application to control the number of digits, timeouts, and so forth. You can get a complete list by running the
core show application read command at the Asterisk CLI. If no timeout is specified, Read() will finish when the caller presses the hash key (#) on their
keypad.

ext en=>6123, 1, Read(Di gi t s, ent er - ext - of - per son)
ext en=>6123, n, Pl ayback(you- ent er ed)
ext en=>6123, n, SayNunber (${ Di gi t s})

In this example, the Read() application plays a sound prompt which says "Please enter the extension of the person you are looking for", and saves the
captured digits in a variable called Digits. It then plays a sound prompt which says "You entered" and then reads back the value of the Digits variable.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 78

Pattern Matching

The next concept we'll cover is called pattern matching. Pattern matching allows us to create extension patterns in our dialplan that match more than one
possible dialed number. Pattern matching saves us from having to create an extension in the dialplan for every possible number that might be dialed.

When Alice dials a number on her phone, Asterisk first looks for an extension (in the context specified by the channel driver configuration) that matches
exactly what Alice dialed. If there's no exact match, Asterisk then looks for a pattern that matches. After we show the syntax and some basic examples of
pattern matching, we'll explain how Asterisk finds the best match if there are two or more patterns which match the dialed number.

Pattern matches always begin with an underscore. This is how Asterisk recognizes that the extension is a pattern and not just an extension with a funny
name. Within the pattern, we use various letters and characters to represent sets or ranges of numbers. Here are the most common letters:

X

The letter X or x represents a single digit from 0 to 9.
z

The letter Z or z represents any digit from 1 to 9.

N

The letter N or n represents a single digit from 2 to 9.

Now let's look at a sample pattern. If you wanted to match all four-digit numbers that had the first two digits as six and four, you would create an extension
that looks like:

exten => _64XX, 1, SayDi gi t s(${ EXTEN})

In this example, each X represents a single digit, with any value from zero to nine. We're essentially saying "The first digit must be a six, the second digit
must be a four, the third digit can be anything from zero to nine, and the fourth digit can be anything from zero to nine".

If we want to be more specific about a range of numbers, we can put those numbers or number ranges in square brackets to define a character set. For
example, what if we wanted the second digit to be either a three or a four? One way would be to create two patterns (_64XX and _63XX), but a more
compact method would be to do _6[34]XX. This specifies that the first digit must be a six, the second digit can be either a three or a four, and that the last
two digits can be anything from zero to nine.

You can also use ranges within square brackets. For example, [1-468] would match a single digit from one through four or six or eight. It does not match
any number from one to four hundred sixty-eight!

Within Asterisk patterns, we can also use a couple of other characters to represent ranges of numbers. The period character (.) at the end of a pattern
matches one or more remaining characters. You put it at the end of a pattern when you want to match extensions of an indeterminate length. As an
example, the pattern _9876. would match any number that began with 9876 and had at least one more character or digit.

The exclamation mark (!) character is similar to the period and matches zero or more remaining characters. It is used in overlap dialing to dial through
Asterisk. For example, _9876! would match any number that began with 9876 including 9876, and would respond that the number was complete as soon
as there was an unambiguous match.

@ Asterisk treats a period or exclamation mark as the end of a pattern. If you want a period or exclamation mark in your pattern as a plain
character you should put it into a character set: [.] or [!].

(D Be Careful With Wildcards in Pattern Matches
Please be extremely cautious when using the period and exclamation mark characters in your pattern matches. They match more than just
digits. They match on characters. If you're not careful to filter the input from your callers, a malicious caller might try to use these wildcards to
bypass security boundaries on your system.

For a more complete explanation of this topic and how you can protect yourself, please refer to the README-SERIOUSLY .bestpractices.txt fil
e in the Asterisk source code.

Now let's show what happens when there is more than one pattern that matches the dialed number. How does Asterisk know which pattern to choose as
the best match?

Asterisk uses a simple set of rules to sort the extensions and patterns so that the best match is found first. The best match is simply the most specific
pattern. The sorting rules are:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 79

1. The dash (-) character is ignored in extensions and patterns except when it is used in a pattern to specify a range in a character set. It
has no effect in matching or sorting extensions.

2. Non-pattern extensions are sorted in ASCII sort order before patterns.

3. Patterns are sorted by the most constrained character set per digit first. By most constrained, we mean the pattern that has the fewest
possible matches for a digit. As an example, the N character has eight possible matches (two through nine), while X has ten possible
matches (zero through nine) so N sorts first.

4. Character sets that have the same number of characters are sorted in ASCII sort order as if the sets were strings of the set characters.
As an example, X is 0123456789 and [a-]] is abcdefghij so X sorts first. This sort ordering is important if the character sets overlap as
with [0-4] and [4-8].

5. The period (.) wildcard sorts after character sets.

6. The exclamation mark (!) wildcard sorts after the period wildcard.

Let's look at an example to better understand how this works. Let's assume Alice dials extension 6421, and she has the following patterns in her dialplan:

exten => _6XX1, 1, SayAl pha(A)
exten => _64XX, 1, SayAl pha(B)
exten => _640X, 1, SayAl pha(Q)
exten => _6., 1, SayAl pha(D)
exten => _64NX, 1, SayAl pha(E)
exten => _6[45] NX, 1, SayAl pha(F)
exten => _6[34] NX, 1, SayAl pha(Q

Can you tell (without reading ahead) which one would match?

Using the sorting rules explained above, the extensions sort as follows:

_640X sorts before _64NX because of rule 3 at position 4. (0 before N)

_64NX sorts before _64XX because of rule 3 at position 4. (N before X)

_64XX sorts before _6[34]NX because of rule 3 at position 3. (4 before [34])
_6[34]NX sorts before _6[45]NX because of rule 4 at position 3. ([34] before [45])
_6[45]NX sorts before _6XX1 because of rule 3 at position 3. ([45] before X)
_6XX1 sorts before _6. because of rule 5 at position 3. (X before .)

Sorted extensions

exten => _640X, 1, SayAl pha(C)
exten => _64NX, 1, SayAl pha(E)
exten => _64XX, 1, SayAl pha(B)
exten => _6[34] NX, 1, SayAl pha(Q
exten => _6[45] NX, 1, SayAl pha(F)
exten => _6XX1, 1, SayAl pha(A)
exten => _6., 1, SayAl pha(D)

When Alice dials 6421, Asterisk searches through its list of sorted extensions and uses the first matching extension. In this case _64NX is found.

To verify that Asterisk actually does sort the extensions in the manner that we've shown, add the following extensions to the [users] context of your own
dialplan.

exten => _6XX1, 1, SayAl pha(A)
exten => _64XX, 1, SayAl pha(B)
exten => _640X, 1, SayAl pha(C)
exten => _6., 1, SayAl pha(D)
exten => _64NX, 1, SayAl pha(E)
exten => _6[45] NX, 1, SayAl pha(F)
exten => _6[34] NX, 1, SayAl pha(Q

Reload the dialplan, and then type dialplan show 6421@users at the Asterisk CLI. Asterisk will show you all extensions that match in the [users] context.
If you were to dial extension 6421 in the [users] context the first found extension will execute.

server*CLI > di al pl an show 6421@isers
[Context 'users' created by 'pbx_config']

' _B4ANX => 1. SayAl pha(E) [pbx_confi g]
t_BAXX => 1. SayAl pha(B) [pbx_confi g]
' _6[34]NX => 1. SayAl pha(Q [pbx_confi g]
'_B[45] NX' => 1. SayAl pha(F) [pbx_confi g]
t_BXX1 => 1. SayAl pha(A) [pbx_confi g]
6. => 1. SayAl pha(D) [pbx_confi g]

-= 6 extensions (6 priorities) in 1 context. =-

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 80

server*CLI > di al pl an show users
[Context 'users' created by 'pbx_config']

' _640X => 1. SayAl pha(C) [pbx_confi g]
' _B4ANX => 1. SayAl pha(E) [pbx_confi g]
'_BAXX => 1. SayAl pha(B) [pbx_confi g]
' _6[34]NX => 1. SayAl pha(Q [pbx_confi g]
' _B[45] NX' => 1. SayAl pha(F) [pbx_confi g]
t_BXX1 => 1. SayAl pha(A) [pbx_confi g]
6. => 1. SayAl pha(D) [pbx_confi g]

-= 7 extensions (7 priorities) in 1 context. =-

You can dial extension 6421 to try it out on your own.

Be Careful with Pattern Matching
Please be aware that because of the way auto-fallthrough works, if Asterisk can't find the next priority number for the current extension or pattern
match, it will also look for that same priority in a less specific pattern match. Consider the following example:

exten => 6410, 1, SayDi gi t s(987)
exten => _641X, 1, SayDi gi t s(12345)
exten => _641X, n, SayDi gi t s(54321)

If you were to dial extension 6410, you'd hear "nine eight seven five four three two one".

We strongly recommend you make the Hangup() application be the last priority of any extension to avoid this problem, unless you purposely
want to fall through to a less specific match.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 81

Include Statements

Include statements allow us to split up the functionality in our dialplan into smaller chunks, and then have Asterisk search multiple contexts for a dialed
extension. Most commonly, this functionality is used to provide security boundaries between different classes of callers.

It is important to remember that when calls come into the Asterisk dialplan, they get directed to a particular context by the channel driver. Asterisk then
begins looking for the dialed extension in the context specified by the channel driver. By using include statements, we can include other contexts in the

search for the dialed extension.

Asterisk supports two different types of include statements: regular includes and time-based includes.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 82

Include Statements Basics

To set the stage for our explanation of include statements, let's say that we want to organize our dialplan and create a new context called [docs:features].
We'll leave our extensions 6001 and 6002 for Alice and Bob in the [docs:users] context, and place extensions such as 6500 in the new [docs:features] c
ontext. When calls come into the users context and doesn't find a matching extension, the include statement tells Asterisk to also look in the new [docs:fea

tures] context.

The syntax for an include statement is very simple. You simply write include => and then the name of the context you'd like to include from the existing

context. If we reorganize our dialplan to add a [docs:features] context, it might look something like this:

[users]
include => features

exten => 6001, 1, Di al (S| P/ deno-al i ce, 20)
same => n, Voi ceMai | (6001@m deno, u)

exten => 6002, 1, Di al (S| P/ denp- bob, 20)
sane => n, Voi ceMai | (6002@m denp, u)

[features]

exten => 6000, 1, Answer (500)
sanme => n, Pl ayback(hel | o-wor| d)
same => n, Hangup()

exten => 6500, 1, Answer (500)
sane => n, Voi ceMai | Mai n(@ m denp)

@ Location of Include Statements

Please note that in the example above, we placed the include statement before extensions 6001 and 6002. It could have just as well come after.
Asterisk will always try to find a matching extension in the current context first, and only follow the include statement to a new context if there

isn't anything that matches in the current context.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

83

Using Include Statements to Create Classes of Service

Now that we've shown the basic syntax of include statements, let's put some include statements to good use. Include statements are often used to build
chains of functionality or classes of service. In this example, we're going to build several different contexts, each with its own type of outbound calling. We'll
then use include statements to chain these contexts together.

@ Numbering Plans
The examples in this section use patterns designed for the North American Number Plan, and may not fit your individual circumstances. Feel

free to use this example as a guide as you build your own dialplan.

In these examples, we're going to assuming that a seven-digit number that does not begin with a zero or a one is a local (non-toll) call. Ten-digit
numbers (where neither the first or fourth digits begin with zero or one) are also treated as local calls. A one, followed by ten digits (where
neither the first or fourth digits begin with zero or one) is considered a long-distance (toll) call. Again, feel free to modify these examples to fit
your own particular circumstances.

@ Outbound dialing
These examples assume that you have a SIP provider named provider configured in sip.conf. The examples dial out through this SIP provider
using the SIP/provider/number syntax.
Obviously, these examples won't work unless you setup a SIP provider for outbound calls, or replace this syntax with some other type of
outbound connection. For more information on configuring a SIP provider, see Section 420. The SIP Protocol. For analog connectivity
information, see Section 441. Analog Telephony with DAHDI. For more information on connectivity via digital circuits, see Section 450. Basics of
Digital Telephony

First, let's create a new context for local calls.

[l ocal]
; seven-digit |ocal nunbers
exten => NXXXXXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; ten-digit |ocal nunbers
exten => _NXXNXXXXXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; energency services (911), and other three-digit services
exten => NXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; if you don't find a match in this context, look in [users]
i ncl ude => users

Remember that the variable ${EXTEN} will get replaced with the dialed extension. For example, if Bob dials 5551212 in the local context, Asterisk will
execute the Dial application with SIP/provider/5551212 as the first parameter. (This syntax means "Dial out to the account named provider using the SIP
channel driver, and dial the number 5551212.)

Next, we'll build a long-distance context, and link it back to the local context with an include statement. This way, if you dial a local number and your
phone's channel driver sends the call to the longdistance context, Asterisk will search the local context if it doesn't find a matching pattern in the longdist
ance context.

[1 ongdi st ance]
; 1+ ten digit |ong-distance nunbers
exten => _1INXXNXXXXXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; if you don't find a match in this context, look in [local]
i ncl ude => | ocal

Last but not least, let's add an [docs:international] context. In North America, you dial 011 to signify that you're going to dial an international number.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 84

[international]
; 1+ ten digit |ong-distance nunbers
exten => _011.,1, Di al (SI P/ provi der/ ${ EXTEN})

; if you don't find a match in this context, |ook in [|ongdistance]
i ncl ude => | ongdi stance

And there we have it -- a simple chain of contexts going from most privileged (international calls) down to lease privileged (local calling).

At this point, you may be asking yourself, "What's the big deal? Why did we need to break them up into contexts, if they're all going out the same outbound

connection?" That's a great question! The primary reason for breaking the different classes of calls into separate contexts is so that we can enforce some
security boundaries.

Do you remember what we said earlier, that the channel drivers point inbound calls at a particular context? In this case, if we point a phone at the [docs:lo
cal] context, it could only make local and internal calls. On the other hand, if we were to point it at the [docs:international] context, it could make
international and long-distance and local and internal calls. Essentially, we've created different classes of service by chaining contexts together with include
statements, and using the channel driver configuration files to point different phones at different contexts along the chain.

Many people find it instructive to look at a visual diagram at this point, so let's draw ourselves a map of the contexts we've created so far.
Insert graphic showing chain of includes from international through long-distance to local and to users and features

In this graphic, we've illustrated the various contexts and how they work together. We've also shown that Alice's phone is pointed at the [docs:internationa
1] context, while Bob's phone is only pointed at the [docs:local] context.

Please take the next few minutes and implement a series of chained contexts into your own dialplan, similar to what we've explained above. You can then

change the configuration for Alice and Bob (in sip.conf, since they're SIP phones) to point to different contexts, and see what happens when you attempt to
make various types of calls from each phone.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 85

Installing Asterisk From Source

One popular option for installing Asterisk is to download the source code and compile it yourself. While this isn't as easy as using package management or
using an Asterisk-based Linux distribution, it does let you decide how Asterisk gets built, and which Asterisk modules are built.

In this section, you'll learn how to download and compile the Asterisk source code, and get Asterisk installed.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 86

What to Download?

On a typical system, you'll want to download three components:

® Asterisk
* DAHDI
® libpri

The libpri library allows Asterisk to communicate with ISDN connections. (We'll cover more about ISDN connections in Section 450.8, "Intro to ISDN PRI
and BRI Connections".) While not always necessary, we recommend you install it on new systems.

The DAHDI library allows Asterisk to communicate with analog and digital telephones and telephone lines, including connections to the Public Switched
Telephone Network, or PSTN. It should also be installed on new systems, even if you don't immediately plan on using analog or digital connections to your
Asterisk system.

DAHDI

DAHDI stands for Digium Asterisk Hardware Device Interface, and is a set of drivers and utilities for a number of analog and digital telephony cards, such
as those manufactured by Digium. The DAHDI drivers are independent of Asterisk, and can be used by other applications. DAHDI was previously called
Zaptel, as it evolved from the Zapata Telephony Project.

The DAHDI code can be downloaded as individual pieces (dahdi-linux for the DAHDI drivers, and dahdi-tools for the DAHDI utilities. They can also be
downloaded as a complete package called dahdi-linux-complete, which contains both the Linux drivers and the utilities.

@ Why is DAHDI split into different pieces?

DAHDI has been split into two pieces (the Linux drivers and the tools) as third parties have begun porting the DAHDI drivers to other operating
systems, such as FreeBSD. Eventually, we may have dahdi-linux, dahdi-freebsd, and so on.

The current version of libpri, DAHDI, and Asterisk can be downloaded from http://downloads.digium.com/pub/telephony/.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 87

http://downloads.digium.com/pub/telephony/

System Requirements
In order to compile and install Asterisk, you'll need to install a C compiler and a number of system libraries on your system.

® Compiler
® System Libraries

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

88

Compiler

The compiler is a program that takes source code (the code written in the C programming language in the case of Asterisk) and turns it into a program that
can be executed. While any C compiler should be able to compile the Asterisk code, we strongly recommend that you use the GCC compiler. Not only is it
the most popular free C compiler on Linux and Unix systems, but it's also the compiler that the Asterisk developers are using.

If the GCC compiler isn't already installed on your machine, simply use appropriate package management system on your machine to install it. You'll also
want to install the C++ portion of GCC as well, as certain Asterisk modules will use it.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 89

System Libraries

In addition to the C compiler, you'll also need a set of system libraries. These libraries are used by Asterisk and must be installed before you can compile
Asterisk. On most operating systems, you'll need to install both the library and it's corresponding development package.

@ Development libraries

For most operating systems, the development packages will have -dev or -devel on the end of the name. For example, on a Red Hat Linux

system, you'd want to install both the "openssl" and "openssl-devel" packages.

A list of libraries you'll need to install include:

OpenSSL

ncurses

newt

libxml2

Kernel headers (for building DAHDI drivers)

We recommend you use the package management system of your operating system to install these libraries before compiling and installing libpri, DAHDI,
and Asterisk.

©

Help Finding the Right Libraries

If you're installing Asterisk 1.6.1.0 or later, it comes with a shell script called install_prereq.sh in the contrib/scripts sub-directory. If you run
install_prereq test, it will give you the exact commands to install the necessary system libraries on your operating system. If you run
install_prereq install, it will attempt to download and install the prerequisites automatically.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 90

Untarring the Source

When you download the source for libpri, DAHDI, and Asterisk you'll typically end up with files with a .tar.gz or .tgz file extension. These files are
affectionately known as tarballs. The name comes from the tar Unix utility, which stands for tape archive. A tarball is a collection of other files combined into
a single file for easy copying, and then often compressed with a utility such as GZip.

To extract the source code from the tarballs, we'll use the tar command. The commands below assume that you've downloaded the tarballs for libpri,
DAHDI, and Asterisk to the /usr/local/src directory on a Linux machine. (You'll probably need to be logged in as the root user to be able to write to that
directory.) We're also going to assume that you'll replace the letters X, Y, and Z with the actual version numbers from the tarballs you downloaded. Also
please note that the command prompt may be slightly different on your system than what we show here. Don't worry, the commands should work just the
same.

First, we'll change to the directory where we downloaded the source code:

[root @erver ~]# cd /usr/local/src

Next, let's extract the source code from each tarball using the tar command. The -zxvf parameters to the tar command tell it what we want to do with the
file. The z option tells the system to unzip the file before continuing, the x option tells it to extract the files from the tarball, the v option tells it to be verbose
(write out the name of every file as it's being extracted, and the f option tells the tar command that we're extracting the file from a tarball file, and not from a
tape.

[root @erver src]# tar -zxvf libpri-1.X Y.tar.gz
[root @erver src]# tar -zxvf dahdi-Iinux-conplete-2.X Y+2. X Y.tar.gz

[root @erver src]# tar -zxvf asterisk-1.8.X Y.tar.gz

You should now notice that a new sub-directory was created for each of the tarballs, each containing the extracted files from the corresponding tarball. We
can now compile and install each of the components.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 91

Building and Installing DAHDI

® With Internet Access
® Without Internet Access

Let's install DAHDI! On Linux, we will use the DAHDI-linux-complete tarball, which contains both the DAHDI Linux drivers as well as the DAHDI tools.
Again, we're assuming that you've untarred the tarball in the /usr/local/src directory, and that you'll replace X and Y with the appropriate version numbers.

1 LibPRI 1.4.13 and later source code depends on DAHDI include files. So, as a change from older versions, one must install DAHDI before
installing libPRI.

With Internet Access

[root @erver src]# cd dahdi-Ilinux-conplete-2. X Y+2. XY
[root @erver dahdi-Iinux-conplete-2. X Y+2. X. Y] # nake
[root @erver dahdi-I|inux-conplete-2. X Y+2. X Y] # nake install

[root @erver dahdi-|inux-conplete-2. X Y+2. X Y] # nake config

Without Internet Access

When installing on a system without internet access, there are a few additional steps that are required to build DAHDI.
The firmware files for the various VPM modules will need to be downloaded and extracted in the source directory. The file specific links provided below are
the current versions as of this writing. Please check the link below for the full list of versions.

http://downloads.digium.com/pub/telephony/firmware/releases/

On a system with internet access, download the following files:

wget http://downl oads. di gi um conf pub/tel ephony/firnmnare/rel eases/ dahdi - f w hx8-2. 06.tar. gz

wget http://downl oads. di gi um conf pub/tel ephony/firnmnare/rel eases/ dahdi - f w- oct 6114- 064- 1. 05. 01. tar. gz
wget http://downl oads. di gi um conf pub/tel ephony/firnnare/rel eases/ dahdi - f w- oct 6114-128- 1. 05. 01. tar. gz
wget http://downl oads. di gi um conf pub/tel ephony/ firnware/rel eases/ dahdi - f w vpnoct 032-1. 8. 0. tar. gz
wget http://downl oads. di gi um conf pub/tel ephony/firnwnare/rel eases/ dahdi - fwtc400m MR6. 12. tar. gz

wget http://downl oads. di gi um conf pub/tel ephony/firnnare/rel eases/ dahdi - f W oad- vpmadt 032- 1. 25. 0. tar. gz

Now send these to the Asterisk system and store them in

lusr/1ocal/src/dahdi-Ilinux-conplete-2.X Y+2. X Y/linux/drivers/dahdi/firnmare/

Now we can continue the installation on the Asterisk system using the steps below.

[root @erver src]# cd dahdi-Ilinux-conplete-2. X Y+2. X. Y

[root @erver dahdi-|inux-conplete-2.X Y+2. X Y]# cd |inux/drivers/dahdi/firnmare

[root @Gerver firmware]# for tarball in $(Is dahdi-fw*.tar.gz); do tar -zxf $tarball; done;
[root @erver firmware] # cd -

[root @erver dahdi-|inux-conplete-2. X Y+2. X. Y] # nake

[root @erver dahdi-I|inux-conplete-2. X Y+2. X Y] # nake install

[root @erver dahdi-I|inux-conplete-2. X Y+2. X Y] # nake config

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 92

http://downloads.digium.com/pub/telephony/firmware/releases/

Building and Installing LibPRI

Before you can build libpri, you'll need to Building and Installing DAHDI

Having finished that, let's compile and install libpri. Again, we'll assume that you'll replace the letters X, Y, and Z with the actual version numbers from the
tarballs you downloaded.

[root @erver src]# cd libpri-1.XY

This command changes directories to the libpri source directory.

[root @erver |ibpri-1.X Y]# make

This command compiles the libpri source code into a system library.

[root @erver libpri-1.X Y]# make install

This command installs the libpri library into the proper system library directory

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 93

Checking Asterisk Requirements

Now it's time to compile and install Asterisk. Let's change to the directory which contains the Asterisk source code.

‘ [root @erver dahdi-|inux-conplete-2.X Y+2. X Y]# cd /usr/local/src/asterisk-1.8. XY ‘

Next, we'll run a command called ./configure, which will perform a number of checks on the operating system, and get the Asterisk code ready to compile
on this particular server.

‘ [root @erver asterisk-1.8.X. Y]# ./configure ‘

This will run for a couple of minutes, and warn you of any missing system libraries or other dependencies.

If you have missing dependencies then you should install them now and then run configure again to make sure they are recognized. A helpful way to
install most of the dependencies you need is to use the install_prereq script included in the contrib/scripts/ directory of your Asterisk source. It's quite
straightforward to use, but may not work on all systems. Run the script with no arguments to see the usage help.

Upon completion of ./configure, you should see a message that looks similar to the one shown below. (Obviously, your host CPU type may be different than
the below.)

. $PSESHIFSSSESB=. .
L $7$7. . LT$$7: .
. $7$7. . L T$$7: .
. $$: . ,$7.7
. $7. 7$$%$. $%77
.. 88, $3$8$. $$$7
78 L2, $$$$8 . 2. 7$$$.
$. 3. . S8BT, EST7 . 78S, . $$8.
LTT7. . $PSESHTTSSST 7SS, $$$,
$$$~ LTSS ESISSSESS7. . $$8.
. $%7 . T3SES$$$7: ?$$$.
$$$ 27$3$$3$8$5$! . $8$7
$$$. T3SSSSISSSS$SS : $38.
$$$ $SEF7S$SSESSSS . $$8.
$$$ $$$ TISET . $%$. $38.
$$$$ $$$87 . $$8.
7$$$7 7$$$$ 7$$$
$3$8$ $$$
$$$$7. $$ (TM
$3$8$5$. L 7883583 $$
FEESIFSSSS7ISSSEFFS. $$$$S
$SEPESFSSSESS.
configure: Package configured for:&bsp;
configure: OS type : |inux-gnu
configure: Host CPU : x86_64
configure: build-cpu:vendor:os: x86_64 : unknown : |inux-gnu :
configure: host-cpu:vendor:os: x86_64 : unknown : |inux-gnu :

Cached Data
The ./configure command caches certain data to speed things up if it's invoked multiple times. To clear all the cached data, you can use the
following command to completely clear out any cached data from the Asterisk build system.

‘ [root @erver asterisk-1.8.X Y]# make distclean

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 94

Using Menuselect to Select Asterisk Options

The next step in the build process is to tell Asterisk which modules[docs:1] to compile and install, as well as set various compiler options. These settings
are all controlled via a menu-driven system called menuselect. To access the menuselect system, type:

‘ [root @erver asterisk-1.8.X Y]# nake nenusel ect

1 Terminal Window
Your terminal window size must be at least eighty characters wide and twenty-one lines high, or menuselect will not work. Instead, you'll get an
error message stating

| Terninal nust be at |east 80 x 21. |

1 Asterisk 1.8+
| Terninal nust be at |east 80 x 27. |

The menuselect menu should look like the screen-shot below. On the left-hand side, you have a list of categories, such as Applications, Channel Drivers,
and PBX Modules. On the right-hand side, you'll see a list of modules that correspond with the select category. At the bottom of the screen you'll see two
buttons. You can use the Tab key to cycle between the various sections, and press the Enter key to select or unselect a particular module. If you see
[docs:] next to a module name, it signifies that the module has been selected. If you see *XXX next to a module name, it signifies that the select
module cannot be built, as one of its dependencies is missing. In that case, you can look at the bottom of the screen for the line labeled Depends upon: for
a description of the missing dependency.

When you're first learning your way around Asterisk on a test system, you'll probably want to stick with the default settings in menuselect. If you're building
a production system, however, you may not wish to build all of the various modules, and instead only build the modules that your system is using.

Asterisk Module and Build Option Selection

oplications L
Call Detall Recording app_alarmrecelver
Channel Drivers app_amd
Codec Translators app_authenticate
Format Interpreters app_cdr
Dialplan Functlons app_chanisavall
PEX Modules app_channelredirect
Resource Modules app_chanspy
Test Modules app_controlplayback

— EECEEEE T -

Asterisk ADSI Programming Application

Depends on: res_adsi(M)
Can use: N/A
Conflicts with: N/A

<ENTER> toggles selection | <Fl2> saves & exits | <ESC> exits without save

@ Easier Debugging of Asterisk Crashes

If you're finding that Asterisk is crashing on you, there's a setting in menuselect that will help provide additional information to the Asterisk
developers. Go into menuselect, select the the Compiler Flags section (you'll need to scroll down in the left-hand list), and select the
DONT_OPTIMIZE setting. Then rebuild Asterisk as shown below. While the Asterisk application will be slightly larger, it will provide additional
debugging symbols in the event of a crash.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 95

We should also inform people that the sound prompts are selected in menuselect as well

When you are finished selecting the modules and options you'd like in menuselect, press F12 to save and exit, or highlight the Save and Exit button and
press enter.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 96

Building and Installing Asterisk

Now we can compile and install Asterisk. To compile Asterisk, simply type make at the Linux command line.

‘ [root @erver asterisk-1.8.X Y]# nake

The compiling step will take several minutes, and you'll see the various file names scroll by as they are being compiled. Once Asterisk has finished
compiling, you'll see a message that looks like:

R Asterisk Build Complete --------- +
+ Asterisk has successfully been built, and +
+ can be installed by running: +
+ +
+ make install +
o m e m e e e e e e e eeeeeaas +
L Asterisk Build Conplete --------- +

As the message above suggests, our next step is to install the compiled Asterisk program and modules. To do this, use the make install command.

[root @erver asterisk-1.8.X Y]# nmake install

When finished, Asterisk will display the following warning:

+---- Asterisk Installation Conplete ------- +
+ +
+ YOU MUST READ THE SECURI TY DOCUNMENT +
+ +
+ Asterisk has successfully been installed. +
+ |f you would like to install the sanple +
+ configuration files (overwiting any +
+ existing config files), run: +
+ +
+ make sanpl es +
+ +
B L T L T +
+---- Asterisk Installation Conplete ------- +

@ Security Precautions
As the message above suggests, we very strongly recommend that you read the security documentation before continuing with your Asterisk
installation. Failure to read and follow the security documentation can leave your system vulnerable to a number of security issues, including toll
fraud.

If you installed Asterisk from a tarball (as shown above), the security information is located in a PDF file named asterisk.pdfin the tex/
sub-directory of the source code. If that file doesn't exist, please install the rubber application on your system, and then type:

[root @erver asterisk-1.8.X Y]# make pdf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 97

Installing Sample Files

To install a set of sample configuration files for Asterisk, type:

‘ [root @erver asterisk-1.8.X Y]# nake sanples

Any existing sample files which have been modified will be given a .old file extension. For example, if you had an existing file named extensions.conf, it
would be renamed to extensions.conf.old and the sample dialplan would be installed as extensions.conf.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 98

Installing Initialization Scripts

Now that you have Asterisk compiled and installed, the last step is to install the initialization script, or initscript. This script starts Asterisk when your server
starts, and can be used to stop or restart Asterisk as well. To install the initscript, use the make config command.

‘ [root @erver asterisk-1.8.X. Y]# make config ‘

As your Asterisk system runs, it will generate logfiles. It is recommended to install the logrotation script in order to compress and rotate those files, to save
disk space and to make searching them or cataloguing them easier. To do this, use the make install-logrotate command.

‘ [root @erver asterisk-1.8.X Y]# nake install-logrotate ‘

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 99

Validating Your Installation

Before continuing on, let's check a few things to make sure your system is in good working order. First, let's make sure the DAHDI drivers are loaded. You
can use the Ismod under Linux to list all of the loaded kernel modules, and the grep command to filter the input and only show the modules that have dah
di in their name.

‘ [root @erver asterisk-1.8.X. Y]# |snod | grep dahdi ‘

If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

‘ [root @erver asterisk-1.8.X Y]# /etc/init.d/dadhi start ‘

@ Different Methods for Starting Initscripts

Many Linux distributions have different methods for starting initscripts. On most Red Hat based distributions (such as Red Hat Enterprise Linux,
Fedora, and CentOS) you can run:

| [root @erver asterisk-1.8.X. Y]# service dahdi start |

Distributions based on Debian (such as Ubuntu) have a similar command, though it's not commonly used:

| [root @erver asterisk-1.8.X Y]# invoke-rc.d dahdi start |

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the output below. (The exact details may be different, depending
on which DAHDI modules have been built, and so forth.)

[root @erver asterisk-1.8.X Y]# |snod | grep dahdi

dahdi _dumy 4288 0

dahdi _transcode 7928 1 wctc4xxp

dahdi _voi cebus 40464 2 wct dnR4xxp, wet el2xp

dahdi 196544 12 dahdi _dummy, wet dnR4xxp, wet e11xp, wet 1xxp, wet e12xp, wet 4xxp
crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices in your system. You can also run the dahdi_tool utility to
show the various DAHDI-compatible devices, and their current state.

To check if Asterisk is running, you can use the Asterisk initscript.

[root @erver asterisk-1.8.X. Y]# /etc/init.d/ asterisk status
asterisk is stopped

To start Asterisk, we'll use the initscript again, this time giving it the start action:

[root @erver asterisk-1.8.X Y]# /etc/init.d/ asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any response on the command line. We can check the status
of Asterisk and see that it's running using the command below. (The process identifier, or pid, will obviously be different on your system.)

[root @erver asterisk-1.8.X Y]# /etc/init.d/asterisk status
asterisk (pid 32117) is running...

And there you have it! You've compiled and installed Asterisk, DAHDI, and libpri from source code.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 100

Getting Started with Asterisk

In this section, we'll show you how to get started with Asterisk, and how to get around on the Asterisk command-line interface (commonly abbreviated as
CLI). We'll also show you how to troubleshoot common problems that you might encounter when first learning Asterisk

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 101

Connecting to the CLI

First, let's show you how to connect to the Asterisk command-line interface. As you should recall from the installation, Asterisk typically runs in the
background as a service or daemon. If the Asterisk service is already running, type the command below to connect to its command-line interface.

‘ [root @erver ~]# asterisk -r

The -r parameter tells the system that you want to re-connect to the Asterisk service. If the reconnection is successful, you'll see something like this:

[root @erver ~]# asterisk -r

Asterisk version, Copyright (C) 1999 - 2010 Digium Inc. and others.

Created by Mark Spencer <narkster @i gi um con>

Asterisk conmes with ABSOLUTELY NO WARRANTY; type 'core show warranty' for details.
This is free software, with conponents |icensed under the GNU General Public

Li cense version 2 and other licenses; you are welconme to redistribute it under
certain conditions. Type 'core show |icense' for details.

Connected to Asterisk version currently running on server (pid = 11187)
server*CLI >

Notice the *CLI> text? That's your Asterisk command-line prompt. All of the Asterisk CLI commands take the form of module action parameters.... For

example, type core show uptime to see how long Asterisk has been running.

server*CLI > core show uptine
Systemuptinme: 1 hour, 34 nminutes, 17 seconds
Last reload: 1 hour, 34 nminutes, 17 seconds

You can use the built-in help to get more information about the various commands. Simply type core show help at the Asterisk prompt for a full list of

commands, or core show help command for help on a particular command.

If you'd like to exit the Asterisk console and return to your shell, just use the quit command from the CLI. Such as:

‘ server*CLI> quit

Executing Command Outside Of CLI
You can execute an Asterisk command from outside the CLI:

$ asterisk -rx "core rel oad"

$ asterisk -rx "core show help" | grep -i "sip

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

102

Stopping and Restarting Asterisk
There are four common commands related to stopping the Asterisk service. They are:

1. core stop now - This command stops the Asterisk service immediately, ending any calls in progress.

2. core stop gracefully - This command prevents new calls from starting up in Asterisk, but allows calls in progress to continue. When all
the calls have finished, Asterisk stops.

3. core stop when convenient - This command waits until Asterisk has no calls in progress, and then it stops the service. It does not
prevent new calls from entering the system.

There are three related commands for restarting Asterisk as well.

1. corerestart now - This command restarts the Asterisk service immediately, ending any calls in progress.

2. core restart gracefully - This command prevents new calls from starting up in Asterisk, but allows calls in progress to continue. When all
the calls have finished, Asterisk restarts.

3. core restart when convenient - This command waits until Asterisk has no calls in progress, and then it restarts the service. It does not
prevent new calls from entering the system.

There is also a command if you change your mind.

® core abort shutdown - This command aborts a shutdown or restart which was previously initiated with the gracefully or when convenient
options.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 103

Changing the Verbose and Debug Levels

Asterisk has two different classes of messages that appear in the command-line interface. The first class is called verbose messages. Verbose messages
give information about the calls on the system, as well as notices, warnings, and errors. Verbose messages are intended for Asterisk administrators to be
able to better manage their systems.

Asterisk allows you to control the verbosity level of the command-line interface. At a verbosity level of zero, you'll receive minimal information about calls on
your system. As you increase the verbosity level, you'll see more and more information about the calls. For example, if you set the verbosity level to three
or higher, you'll see each step a call takes as it makes its way through the dialplan. There are very few messages that only appear at verbosity levels higher
than three.

To change the verbosity level, use the CLI command core set verbose, as shown below:

server*CLlI > core set verbose 3
Verbosity was 0 and is now 3

You can also increase (but not decrease) the verbosity level when you connect to the Asterisk CLI from the Linux prompt, by using one or more -v paramet
ers to the asterisk application. For example, this would connect to the Asterisk CLI and set the verbosity to three (if it wasn't already three or higher),
because we added three -v parameters:

[root @erver ~]# asterisk -vvvr

The second class of system messages is known as debug messages. These messages are intended for Asterisk developers, to give information about
what's happening in the Asterisk program itself. They're often used by developers when trying to track down problems in the code, or to understand why
Asterisk is behaving in a certain manner.

To change the debugging level, use the CLI command core set debug, as shown below:

server*CLlI > core set debug 4
Core debug was 0 and is now 4

You can also increase (but not decrease) the debugging level when you connect to the Asterisk CLI from the Linux prompt. Simply add one or more -d para
meters to the asterisk application.

‘ [root @erver ~]# asterisk \-ddddr

@ Verbose and Debug Levels
Please note that the verbose and debug levels are global settings, and apply to all of Asterisk, not just your command-line interface.

We recommend that you set your verbosity level to three while learning Asterisk, so that you can get a feel for what is happening as calls are
processed. On a busy production system, however, you'll want to set the verbosity level lower. We also recommend that you use debug
messages sparingly, as they tend to be quite verbose and can affect call volume on busy systems.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 104

Simple CLI Tricks

There are a couple of tricks that will help you on the Asterisk command-line interface. The most popular is tab completion. If you type the beginning of a
command and press the Tab key, Asterisk will attempt to complete the name of the command for you, or show you the possible commands that start with
the letters you have typed. For example, type co and then press the Tab key on your keyboard.

server*CLI > co[Tab]
config core
server*CLI > co

Now press the r key, and press tab again. This time Asterisk completes the word for you, as core is the only command that begins with cor. This trick also
works with sub-commands. For example, type core show and press tab. (You may have to press tab twice, if you didn't put a space after the word show.)
Asterisk will show you all the sub-commands that start with core show.

server*CLI > core show [Tab]

appl i cation appl i cations calls channel
channel s channel type channel types codec
codecs config file function
functions hel p hi nt hints

i mge i cense profile settings
sw tches sysinfo taskprocessors threads
translation upti me version warranty
server*CLI > core show

Another trick you can use on the CLI is to cycle through your previous commands. Asterisk stores a history of the commands you type and you can press
the up arrow key to cycle through the history.

If you type an exclamation mark at the Asterisk CLI, you will get a Linux shell. When you exit the Linux shell (by typing exit or pressing Ctrl+D), you return
to the Asterisk CLI. You can also type an exclamation mark and a Linux command, and the output of that command will be shown to you, and then you'll be
returned to the Asterisk CLI.

server*CLI > ! whoani
root
server*CLI >

As you can see, there's a wealth of information available from the Asterisk command-line interface, and we've only scratched the surface. In later sections,
we'll go into more details about how to use the command-line interface for other purposes.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 105

Troubleshooting

If you're able to get the command-line examples above working, feel free to skip this section. Otherwise, let's look at troubleshooting connections to the
Asterisk CLI.

The most common problem that people encounter when learning the Asterisk command-line interface is that sometimes they're not able to connect to the
Asterisk service running in the background. For example, let's say that Fred starts the Asterisk service, but then isn't able to connect to it with the CLI:

[root @erver ~]# service asterisk start

Starting asterisk: [&K]
[root @erver ~]# asterisk -r

Asterisk version, Copyright (C) 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <narkster @i gi um con>

Unabl e to connect to renote asterisk (does /var/run/asterisk/asterisk.ctl exist?)

What does this mean? It most likely means that Asterisk did not remain running between the time that the service was started and the time Fred tried to
connect to the CLI (even if it was only a matter of a few seconds.) This could be caused by a variety of things, but the most common is a broken
configuration file.

To diagnose Asterisk start-up problems, we'll start Asterisk in a special mode, known as console mode. In this mode, Asterisk does not run as a
background service or daemon, but instead runs directly in the console. To start Asterisk in console mode, pass the -c parameter to the asterisk applicatio
n. In this case, we also want to turn up the verbosity, so we can see any error messages that might indicate why Asterisk is unable to start.

[root @erver ~]# asterisk -vvvc

Asterisk version, Copyright (C) 1999 - 2010 Digium Inc. and others.

Created by Mark Spencer <narkster @i gi um con>

Asterisk comes wi th ABSOLUTELY NO WARRANTY; type 'core show warranty' for details.
This is free software, with conponents |icensed under the GNU General Public

Li cense version 2 and other licenses; you are welconme to redistribute it under
certain conditions. Type 'core show |icense' for details.

== Parsing '/etc/asterisk/asterisk.conf': == Found
== Parsing '/etc/asterisk/extconfig.conf': == Found
== Parsing '/etc/asterisk/|ogger.conf': == Found

== Parsing '/etc/asterisk/asterisk.conf': == Found
Asterisk Dynam c Loader Starting:

== Parsing '/etc/asterisk/nodul es.conf"': == Found

Carefully look for any errors or warnings that are printed to the CLI, and you should have enough information to solve whatever problem is keeping Asterisk
from starting up.

Running Asterisk in Console Mode
We don't recommend you use Asterisk in console mode on a production system, but simply use it for debugging, especially when debugging
start-up problems. On production systems, run Asterisk as a background service.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 106

Asterisk Architecture

From an architectural standpoint, Asterisk is made up of many different modules. This modularity gives you an almost unlimited amount of flexibility in the
design of an Asterisk-based system. As an Asterisk administrator, you have the choice on which modules to load. Each module that you loads provides
different capabilities to the system. For example, one module might allow your Asterisk system to communicate with analog phone lines, while another
might add call reporting capabilities. In this section, we'll discuss the various types of modules and the capabilities they provide.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 107

Types of Asterisk Modules
There are many different types of modules, many of which are shown in the diagram above.
® Channel Drivers

At the top of the diagram, we show channel drivers. Channel drivers communicate with devices outside of Asterisk, and translate that particular signaling or
protocol to the core.

¢ Dialplan Applications
Applications provide call functionality to the system. An application might answer a call, play a sound prompt, hang up a call, and so forth.
® Dialplan Functions
Functions are used to retrieve or set various settings on a call. A function might be used to set the Caller ID on an outbound call, for example.
® Resources
As the name suggests, resources provide resources to Asterisk. Common examples of resources include music on hold and call parking.
* CODECs

A CODEC (which is an acronym for COder/DECoder) is a module for encoding or decoding audio or video. Typically codecs are used to encode media so
that it takes less bandwidth.

® File Format Drivers
File format drivers are used to save media to disk in a particular file format, and to convert those files back to media streams on the network.
® Call Detail Record (CDR) Drivers
CDR drivers write call logs to a disk or to a database.
® Call Event Log (CEL) Drivers
Call event logs are similar to call detail records, but record more detail about what happened inside of Asterisk during a particular call.
® Bridge Drivers
Bridge drivers are used by the bridging architecture in Asterisk, and provide various methods of bridging call media between participants in a call.

Now let's go into more detail on each of the module types.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 108

Channel Driver Modules

All calls from the outside come through a channel driver before reaching the core, and all outbound calls go through a channel driver on their way to the
external device.

The SIP channel driver, for example, communicates with external devices using the SIP protocol. It translates the SIP signaling into the core. This means
that the core of Asterisk is signaling agnostic. Therefore, Asterisk isn't just a SIP PBX, it's a multi-protocol PBX.

For more information on the various channel drivers, see Section 400. Channel Drivers and External Connectivity.

All channel drivers have a file name that look like chan_xxxxx.so, such as chan_sip.so or chan_dahdi.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 109

https://wiki/display/~mdavenport/400.++Channel+Drivers+and+Connectivity

Dialplan Application Modules

The application modules provide call functionality to the system. These applications are then scripted sequentially in the dialplan. For example, a call might
come into Asterisk dialplan, which might use one application to answer the call, another to play back a sound prompt from disk, and a third application to
allow the caller to leave voice mail in a particular mailbox.

For more information on dialplan applications, see Dialplan Fundamentals.

All application modules have file names that looks like app_xxxxx.so, such as app_voicemail.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 110

Dialplan Function Modules

Dialplan functions are somewhat similar to dialplan applications, but instead of doing work on a particular channel or call, they simply retrieve or set a
particular setting on a channel, or perform text manipulation. For example, a dialplan function might retrieve the Caller ID information from an incoming call,
filter some text, or set a timeout for caller input.

For more information on dialplan functions, see PBX Features.

All dialplan application modules have file names that looks like func_xxxxx.so, such as func_callerid.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 111

https://wiki/pages/createpage.action?spaceKey=AST&title=PBX+Features&linkCreation=true&fromPageId=4817487

Resource Modules
Resources provide functionality to Asterisk that may be called upon at any time during a call, even while another application is running on the channel.

Resources are typically used of asynchronous events such as playing hold music when a call gets placed on hold, or performing call parking.

Resource modules have file names that looks like res_xxxxx.so, such as res_musiconhold.so.

112

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Codec Modules
CODEC modules have file names that look like codec_xxxxx.so, such as codec_alaw.so and codec_ulaw.so.

CODECs represent mathematical algorithms for encoding (compressing) and decoding (decompression) media streams. Asterisk uses CODEC modules to
both send and recieve media (audio and video). Asterisk also uses CODEC modules to convert (or transcode) media streams between different formats.

CODEC modules have file names that look like codec_xxxxx.so0, such as codec_alaw.so and codec_ulaw.so.
Asterisk is provided with CODEC modules for the following media types:

®* ADPCM, 32kbit/s

® (G.711 alaw, 64kbit/s
® G.711 ulaw, 64kbit/s
® (G.722, 64kbit/s

® (5.726, 32kbit/s

® GSM, 13kbit/s

® |PC-10, 2.4kbit/s

If the Speex (www.speex.org) development libraries are detected on your system when Asterisk is built, a CODEC module for Speex will also be installed.

If the iLBC (www.ilbcfreeware.org) development libraries are detected on your system when Asterisk is built, a CODEC module for iLBC will also be
installed.

Support for the patent-encumbered G.729A or G.723.1 CODECSs is provided by Digium on a commercial basis through both software and hardware
products. For more information about purchasing licenses or hardware to use the G.729A or G.723.1 CODECs with Asterisk, please see Digium's website.

Support for Polycom's patent-encumbered but free G.722.1 Siren7 and G.722.1C Siren14 CODECSs, or for Skype's SILK CODEC, can be enabled in
Asterisk by downloading the binary CODEC modules from Digium's website.

For more detailed information on CODECs, see CODECs.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 113

http://www.speex.org
http://www.ilbcfreeware.org/
https://wiki/pages/createpage.action?spaceKey=AST&title=CODECs&linkCreation=true&fromPageId=4817491

File Format Drivers

Add a list of the file formats that Asterisk supports, then point them at the module in section 400 that goes into more detail?
Asterisk uses file format modules to take media (such as audio and video) from the network and save them on disk, or retrieve said files from disk and
convert them back to a media stream. While often related to CODECS, there may be more than one available on-disk format for a particular CODEC.

File format modules have file names that look like format_xxxxx.so, such as format_wav.so and format_jpeg.so.

Add a list of the file formats that Asterisk supports, then point them at the module in section 400 that goes into more detail?

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 114

Call Detail Record (CDR) Drivers

CDR modules are used to store call detail records in a variety of formats. Popular storage mechanisms include comma-separated value (CSV) files, as well
as relational databases such as PostgreSQL. Call detail records typically contain one record per call, and give details such as who made the call, who
answered the call, the amount of time spent on the call, and so forth.

For more information on call detail records, see Section 370. Call Detail Records.

Call detail record modules have file names that look like cdr_xxxxx.so, such as cdr_csv.so and cdr_pgsql.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 115

https://wiki/display/~mdavenport/370.+Call+Detail+Records

Call Event Log (CEL) Driver Modules

Call Event Logs record the various actions that happen on a call. As such, they are typically more detailed that call detail records. For example, a call event
log might show that Alice called Bob, that Bob's phone rang for twenty seconds, then Bob's mobile phone rang for fifteen seconds, the call then went to
Bob's voice mail, where Alice left a twenty-five second voicemail and hung up the call. The system also allows for custom events to be logged as well.

For more information about Call Event Logging, see Call Event Logging.

Call event logging modules have file names that look like cel_xxxxx.so, such as cel_custom.so and cel_adaptive_odbc.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 116

https://wiki/pages/createpage.action?spaceKey=AST&title=Channel+Event+Logging&linkCreation=true&fromPageId=4817498

Bridging Modules

Beginning in Asterisk 1.6.2, Asterisk introduced a new method for bridging calls together. It relies on various bridging modules to control how the media
streams should be mixed for the participants on a call. The new bridging methods are designed to be more flexible and more efficient than earlier methods.

Bridging modules have file names that look like bridge_xxxxx.so, such as bridge_simple.so and bridge_multiplexed.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 117

Call Flow and Bridging Model

Now that you know about the various modules that Asterisk uses, let's talk about the ways that calls flow through an Asterisk system. To explain this
clearly, let's say that Alice wants to talk to Bob, and they both have SIP phones connected to their Asterisk system. Let's see what happens!

Should we add a graphic to help explain the call flow model?

. Alice dials extension 6002, which is Bob's extension on the Asterisk system.

A SIP message goes from Alice's phone to the SIP channel driver in Asterisk

. The SIP channel driver authenticates the call. If Alice's phone does not provide the proper credentials, Asterisk rejects the call.

. At this point, we have Alice's phone communicating with Asterisk.

. Now the call goes from the SIP channel driver into the core of Asterisk. Asterisk looks for a set of instructions to follow for extension 6002
in the dialplan.

. Extension 6002 in the dialplan tells Asterisk to call Bob's phone

. Asterisk makes a call out through the SIP channel driver to Bob's phone.

. Bob answers his phone.

. Now we have two independent calls on the Asterisk system: one from Alice, and to Bob. Asterisk now bridges the audio between these
two calls (known as channels in Asterisk parlance).

10. When one channel hangs up, Asterisk signals the other channel to hang up.

OAWN P

© 00 N O

And there we have it! We've shown how calls flow from external devices, through the channel drivers to the core of Asterisk, and back out through the
channel drivers to external devices.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 118

Asterisk Architecture, The Big Picture

Before we dive too far into the various types of modules, let's first take a step back and look at the overall architecture of Asterisk.

e

Command P BX Manager
Line Interface Interface

Applications esources
» -
Diad PL@

File System

CDR

Format Config.

Drivers ¢ 4
Drivers Drivers

Asterisk Architecture
We need to add CEL and Bridge modules to this picture, and take CLI and Manager out for now

The heart of any Asterisk system is the core. The PBX core is the essential component that takes care of bridging calls. The core also takes care of other
items like reading the configuration files and loading the other modules. We'll talk more about the core below, but for now just remember that all the other
modules connect to it.

From a logistical standpoint, these modules are typically files with a .so file extension, which live in the Asterisk modules directory (which is typically /usr/li
b/asterisk/modules). When Asterisk starts up, it loads these files and adds their functionality to the system.

A Plethora of Modules

Take just a minute and go look at the Asterisk modules directory on your system. You should find a wide variety of modules. A typical Asterisk
system has over one hundred fifty different modules!

The core also contains the dialplan, which is the logic of any Asterisk system. The dialplan contains a list of instructions that Asterisk should follow to know
how to handle incoming and outgoing calls on the system.

Asterisk modules which are part of the core have a file name that look like pbx_xxxxx.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 119

Audiohooks

Overview

Certain applications and functions are capable of attaching what is known as an audiohook to a channel. In order to understand what this means and how
to handle these applications and functions, it is useful to understand a little of the architecture involved with attaching them.

Introduction - A Simple Audiohook

Asterisk
SIF Device
Phonel

Audio Source f
Bridge

Channel SIPIPhone 1-xxx s

FITCH_SHIFT
Audio Hook

In this simple example, a SIP phone has dialed into Asterisk and its channel has invoked a function (pitch_shift) which has been set to cause all audio sent
and received to have its pitch shifted higher (i.e. if the audio is voice, the voices will sound squeaky sort of like obnoxious cartoon chipmunks). The
following dialplan provides a more concrete usage:

exten => 1,1, Answer ()
exten => 1,n, Set (Pl TCH_SHI FT(bot h) =hi gher)
exten => 1, n, Voi cenui | (501)

When a phone calls this extension, it will be greeted by a higher pitched version of the voicemail prompt and then the speaker will leave a message for 501.
The sound going from the phone to voicemail will also be higher pitched than what was actually said by the person who left the message.

Right now a serious minded Asterisk user reading this example might think something along the lines of 'So what, | don't have any use for making people
using my phone system sound like squirrels.” However, audiohooks provide a great deal of the functionality for other applications within Asterisk including
some features that are very business minded (listening in on channels, recording phone calls, and even less spy-guy type things like adjusting volume on
the fly)

It's important to note that audiohooks are bound to the channel that they were invoked on. They don't apply to a call (a call is actually a somewhat nebulous
concept in general anyway) and so one shouldn't expect audiohooks to follow other channels around just because audio that those channels are involved
with touches the hook. If the channel that created the audiohook ceases to be involved with an audio stream, the audiohook will also no longer be involved

with that audio stream.

Attended Transfers and AUDIOHOOK _INHERIT

Asterisk

SIP Device SIP Device
Phanel 41 I‘> Phanez
)<Channel SIPJPhcnelxxxxxxxx> Bridge

PITCH_SHIFT

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 120

exten => 1,1, Answer ()
exten => 1,n, M xMonitor(training_recordi ng. wav)
exten => 1, n, Queue(techsupport)

Imagine the following scenario. An outside line calls into an Asterisk system to enter a tech support queue. When the call starts this user hears something
along the lines of "Thank you for calling, all calls will be recorded for training purposes"”, so naturally MixMonitor will be used to record the call. The first
available agent answers the call and can't quite seem to provide a working solution to the customer's problem, so he attempts to perform an attended
transfer to someone with more expertise on the issue. The user gets transfered, and the rest of the call goes smoothly, but... ah nuts. The recording
stopped for some reason when the agent transferred the customer to the other user. And why didn't this happen when he blind transferred a customer the
other day?

The reason MixMonitor stopped is because the channel that owned it died. An Asterisk admin might think something like "That's not true, the mixmonitor
was put on the customer channel and its still there, | can still see it's name is the same and everything." and it's true that it seems that way, but attended
transfers in particular cause what's known as a channel masquerade. Yes, its name and everything else about it seems like the same channel, but in reality
the customer's channel has been swapped for the agent's channel and died since the agent hung up. The audiohook went with it. Under normal
circumstances, administrators don't need to think about masquerades at all, but this is one of the rare instances where it gets in the way of desired
behavior. This doesn't affect blind transfers because they don't start the new dialog by having the person who initiated the transfer bridging to the end
recipient.

Working around this problem is pretty easy though. Audiohooks are not swapped by default when a masquerade occurs, unlike most of the relevant data on
the channel. This can be changed on a case by case basis though with the AUDIOHOOK_INHERIT dialplan function.

Using AUDIOHOOK_INHERT only requires that AUDIOHOOK_INHERIT(source)=yes is set where source is the name given for the source of the
audiohook. For more information on the sources available, see the description of the source argument in the documentation for AUDIOHOOK_INHERIT.

So to fix the above example so that mixmonitor continues to record after the attended transfer, only one extra line is needed.

exten => 1,1, Answer ()

exten => 1, n, M xNMonitor(training_recording.wav)
exten => 1, n, Set (AUDI OHOOK | NHERI T(M xMbni t or) =yes)
exten => 1, n, Queue(techsupport)

Below is an illustrated example of how the masquerade process impacts an audiohook (in the case of the example, PITCH_SHIFT)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 121

Initial Call Sewp

Phone 1

Channel SIPIPhone 1-xxxxxxxx

PITCH_SHIFT

Phone 2
Bridge Channel SIPIPhone2-xxxxxxx0

SIP/Phone2 attempis starts to attended ransfer SIF/Phonel to SIP/Phone3

Phone 2'

Channel SIPIPhone2-xxxxxxxl

Phone 3
Bridge Channel SIPIPhone3-xxooooo

Phone 2 hangs up on Phone 3, initiating the wansfer. This requires a masquerade.

Phone 1 Phone 2
Channel SIPIPhone 1-xoooooo Bridge Channel SIPIPhone2-kxxoxxd
FAY
%%;‘1(% ﬁqﬁ
4? Whether the audiohook gets swapped with the rest of
2 PITCH_SHIFT the relevant channel components depends on
= AUDIOHOOK_INHERIT
g Blue Arrow means:
3 ALDIOHOOK_IMHERIT(PITCH_SHIFT) = yes
ra The audiohook swaps to the other bridge along with
g' the rest of the channel
1]
ﬁ Without ALDIOHOOK_INHERIT,
2 it doesn't swap during the masquerade and Phone 2
;ﬂ takes it over
Phone 2' Phone 3
Channel SIPIPhone2-xxeoox 1 Bridge Channel SIPIPhone3-xxxxxx

Bridges after Transfer: Without AUDIOHOOK_INHERIT(PITCH_SHIFT)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

122

After the masquerade, the bridge consists of Phone2's two channels talking to eachother. Phone 2 has
already hung up, so this dialog will be ending nearly immediately.

Phone 2' Phone 2
Channel SIFIPhone2-mooooo Bridge Channel SIFIPhone2-woooood

The audiohook gets |eft behind
during the masquerade, so it's no
longerwith phonel and got left
behind on a dying channel

PITCH_SHIFT

Phone 1 lostthe audio hook because it didnt get swapped in the masguerade

Phone 1 Phone 3

Channel SIPIPhone 1-xxsoxx Bridge Channel SIPIPhone3-xKxxo

NO SQUEAK FOR YOU!

Bridges after Transfer: With AUDIOHOOK _INHERIT(PITCH_SHIFT)

Again, this bridge is still just phone2 talking to itself now. Phone 2 already hung up and this
bridge is in the process of ending

Phone 2 Phone 2
Channel SIPIPhone2-wxoooo 1 Bridge Channel SIPIPhone2-xxxxxxx0

Since ALUDIOHOOK_INHERIT was enabled, the audiohook came along with Phonel's channel.

Phone 1 Phone 3

Channel SIFIPhone L0000 Bridge Channel SIFIPhone3-xo0oaoo

PITCH_SHIFT Yay! The call
Audio Hook continues to sound
squeaky.

Inheritance of audiohooks can be turned off in the same way by setting AUDIOHOOK_INHERIT(source)=no.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

123

Audiohook Sources

Audiohooks have a source name and can come from a number of sources. An up to date list of possible sources should always be available from the
documentation for AUDIOHOOK_INHERIT.

® Chanspy - from app_chanspy
® MixMonitor - app_mixmonitor.c
® Volume - func_volume.c

® Mute - res_mutestream.c

® Speex - func_speex.c

® pitch_shift - func_pitchshift.c

® JACK_HOOK - app_jack.c

Limitations for transferring Audiohooks
Even with audiohook inheritance set, the MixMonitor is still bound to the channel that invoked it. The only difference in this case is that with this option set,

the audiohook won't be left on the discarded channel through the masquerade. This option doesn't enable a channel running mixmonitor to transfer the
MixMonitor to another channel or anything like that. The dialog below illustrates why.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 124

Phone 1

Channel SIPIPhone 1-xxxxxxx0

PITCH_SHIFT

Initial state of the bricdge

Bridge

Phone 2

Channel SIPIPhone2-xxxxxxxx

Phone 1 starts an attended transfer to Phone 3

Phone 1'

Channel SIPIPhone 1-xocxxxx L

Resulting dialog

Bridge

Phone 3

Channel SIPIPhone3-xxxxxxms

Phone 1 hangs up on Phone 3 initiating the masquerade

Phone 1

Channel SIPIPhone 1-xxxxxxx0

Phone 1'

Channel SIPIPhone 1-xocxxxx L

Resulting dialog

Bridge

Bridge

Phone 2

Channel SIPIPhone2-xxxxxxxx

The sudichook isn't
going to go anywhere
since it isn't on one of
the channels being
swapped

Phone 3

Channel SIPIPhone3-xxxxxsxx

Final status of the bridges

Phone 1's two channels are now bridged to one another, but Phone 1 has hung up already
and this bridge is going to die soon.

Phone 1
Channel SIPIPhone L-xxxxxoxox0

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Bridge

Phone 1'
Channel SIPIPhone L-xxxoxxxs 1

125

Phone 2

Channel SIPIPhone2-xxxxxxxx

Bridge

There are no conditions forwhich the other bridge will ever have the audiohook since
itwasn't owned by either channel involved with the masquerade.

Phone 3

Channel SIPIPhone3-xxxxxxxx

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

126

Asterisk on (Open)Solaris

Asterisk on Solaris 10 and OpenSolaris

On this page

® Asterisk on Solaris 10 and OpenSolaris
® Digium's Support Status
® Build Notes
® Prerequisites
® LDAP dependencies
® Makefile layouts
® FAX support with SpanDSP
® Gotchas
® Runtime issues
® Build issues

Digium's Support Status

According to the README file from 1.6.2: "Asterisk has also been 'ported' and reportedly runs properly on other operating systems as well, including Sun
Solaris, Apple's Mac OS X, Cygwin, and the BSD variants." Digium's developers have also been doing a good job of addressing build and run-time issues
encountered with Asterisk on Solaris.

Build Notes

Prerequisites
The following packages are recommend for building Asterisk 1.6 and later on OpenSolaris:

® SUNWIibm (math library)

® gcc-dev (compiler and several dependencies)

* SUNWflexlex (GNU flex)

®* SUNWggrp (GNU grep)

® SUNWGgsed (GNU sed)

®* SUNWdoxygen (optional; needed for "make progdocs")

® SUNWopenldap (optional; needed for res_config_ldap; see below)
® SUNWgnu-coreutils (optional; provides GNU install; see below)

Caution: installing SUNW gnu packages will change the default application run when the user types 'sed' and 'grep’ from /usr/bin/sed to /usr/gnu/bin/sed.
Just be aware of this change, as there are differences between the Sun and GNU versions of these utilities.

LDAP dependencies

Because OpenSolaris ships by default with Sun's LDAP libraries, you must install the SUNWopenldap package to provide OpenLDAP libraries. Because of
namespace conflicts, the standard LDAP detection will not work.

There are two possible solutions:

1. Port res_config_ldap to use only the RFC-specified API. This should allow it to link against Sun's LDAP libraries.
® The problem is centered around the use of the OpenLDAP-specific Idap_initialize() call.

2. Change the detection routines in configure to use OpenSolaris' layout of OpenLDAP.
® This seems doubtful simply because the filesystem layout of SUNWopenldap is so non-standard.

Despite the above two possibilities, there is a workaround to make Asterisk compile with res_config_ldap.

® Modify the "configure" script, changing all instances of "-lldap" to "-lidap-2.4".
® At the time of this writing there are only 4 instances. This alone will make configure properly detect LDAP availability. But it will
not compile.

® When running make, specify the use of the OpenLDAP headers like this:
"make LDAP_I NCLUDE=-1/usr/incl ude/ openl dap"

Makefile layouts

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 127

This has been fixed in Asterisk 1.8 and is no longer an issue.

In Asterisk 1.6 the Makefile overrides any usage of --prefix. | suspect the assumptions are from back before configure provided the ability to set the
installation prefix. Regardless, if you are building on OpenSolaris, be aware of this behavior of the Makefile!

If you want to alter the install locations you will need to hand-edit the Makefile. Search for the string "SunOS" to find the following section:

Define standard directories for various platforms
These apply if they are not redefined in asterisk.conf
ifeq ($(CSARCH), SunCs)

ASTETCDI R=/ et c/ ast eri sk

ASTLI BDI R=/ opt/ asterisk/lib

ASTVARLI BDI R=/ var/ opt / ast eri sk

ASTDBDI R=$(ASTVARLI BDI R)

ASTKEYDI R=$(ASTVARLI BDI R)

ASTSPOOLDI R=/ var/ spool / ast eri sk

ASTLOGDI R=/ var/| og/ ast eri sk

ASTHEADERDI R=/ opt / ast eri sk/i ncl ude/ ast eri sk

ASTBI NDI R=/ opt / ast eri sk/ bin

ASTSBI NDI R=/ opt / ast eri sk/ shin

ASTVARRUNDI R=/ var/run/ asteri sk

ASTMANDI R=/ opt / ast eri sk/ man
el se

Note that, despite the comment, these definitions have build-time and run-time implications. Make sure you make these changes BEFORE you build!

FAX support with SpanDSP

| have been able to get this to work reliably, including T.38 FAX over SIP. If you are running Asterisk 1.6 note Ticket 16342 if you do not install SpanDSP to
the default locations (/usr/include and /usr/lib).

There is one build issue with SpanDSP that | need to document (FIXME)
Gotchas

Runtime issues

®* WAV and WAVA49 files are not written correctly (see Ticket 16610)
® 32-bit binaries on Solaris are limited to 255 file descriptors by default. (see http://developers.sun.com/solaris/articles/stdio_256.html)

Build issues

® bootstrap.sh does not correctly detect OpenSolaris build tools (see Ticket 16341)

® Console documentation is not properly loaded at startup (see Ticket 16688)

® Solaris sed does not properly create AEL parser files (see Ticket 16696; workaround is to install GNU sed with SUNW(gsed)

® Asterisk's provided install script, install-sh, is not properly referenced in the makeopts file that is generated during the build. One
workaround is to install GNU install from the SUNWgnu-coreutils package. (See Ticket 16781)

Finally, Solaris memory allocation seems far more sensitive than Linux. This has resulted in the discovery of several previously unknown bugs related to
uninitialized variables that Linux handled silently. Note that this means, until these bugs are found and fixed, you may get segfaults.

At the time of this writing | have had a server up and running reasonably stable. However, there are large sections of Asterisk's codebase | do not use and
likely contain more of these uninitialized variable problems and associated potential segfaults.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 128

https://issues.asterisk.org/view.php?id=16342
https://issues.asterisk.org/view.php?id=16610
http://developers.sun.com/solaris/articles/stdio_256.html
https://issues.asterisk.org/view.php?id=16341
https://issues.asterisk.org/view.php?id=16688
https://issues.asterisk.org/view.php?id=16696
https://issues.asterisk.org/view.php?id=16781

Configuration and Operation

Here is the top-level page for all of the Asterisk Reference Information, formerly found in the doc/ and doc/tex subdirectories of the Asterisk source.

It's been there all along, but now it's here, in an easy to view format (no need to install 800MB of dependancies in Debian just to convert .tex into PDF),
that's also searchable. Hoo-ray!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 129

Asterisk Calendaring

The Asterisk Calendaring API aims to be a generic interface for integrating Asterisk with various calendaring technologies. The goal is to be able to support
reading and writing of calendar events as well as allowing notification of pending events through the Asterisk dialplan.

There are three calendaring modules that ship with Asterisk that provide support for iCalendar, CalDAV, and Microsoft Exchange Server calendars. All
three modules support event notification. Both CalDAV and Exchange support reading and writing calendars, while iCalendar is a read-only format.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 130

Configuring Asterisk Calendaring

All asterisk calendaring modules are configured through calender.conf. Each calendar module can define its own set of required parameters in addition to
the parameters available to all calendar types. An effort has been made to keep all options the same in all calendaring modules, but some options will
diverge over time as features are added to each module.

An example calendar.conf might look like:

[cal endar _j oe]

type = ical

url = https://exanpl e.conl hone/jdoe/ Cal endar
user = jdoe

secret = nysecret

refresh = 15

timeframe = 600

aut orem nder = 10

channel = SIP/joe

context = cal endar_event _notify
extension = s

waittinme = 30

Module-independent settings

The settings related to calendar event notification are handled by the core calendaring API. These settings are:
® autoreminder - This allows the overriding of any alarms that may or may not be set for a calendar event. It is specified in minutes.
® refresh - How often to refresh the calendar data; specified in minutes.

* timeframe - How far into the future each calendar refresh should look. This is the amount of data that will be visible to queries from the
dialplan. This setting should always be greater than or equal to the refresh setting or events may be missed. It is specified in minutes.

® channel - The channel that should be used for making the notification attempt.

® waittime - How long to wait, in seconds, for the channel to answer a notification attempt. There are two ways to specify how to handle a
notification. One option is providing a context and extension, while the other is providing an application and the arguments to that
application. One (and only one) of these options should be provided.

® context - The context of the extension to connect to the notification channel
® extension - The extension to connect to the notification. Note that the priority will always be 1.
® app - The dialplan application to execute upon the answer of a notification

® appdata - The data to pass to the notification dialplan application

Module-dependent settings

Connection-related options are specific to each module. Currently, all modules take a url, user, and secret for configuration and no other module-specific
settings have been implemented. At this time, no support for HTTP redirects has been implemented, so it is important to specify the correct URL-paying
attention to any trailing slashes that may be necessary.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 131

Calendaring Dialplan Functions

Read functions

The simplest dialplan query is the CALENDAR_BUSY query. It takes a single option, the name of the calendar defined, and returns "1" for busy (including
tentatively busy) and "0" for not busy.

For more information about a calendar event, a combination of CALENDAR_QUERY and CALENDAR_QUERY_RESULT is used. CALENDAR_QUERY
takes the calendar name and optionally a start and end time in "unix time" (seconds from unix epoch). It returns an id that can be passed to
CALENDAR_QUERY_RESULT along with a field name to return the data in that field. If multiple events are returned in the query, the number of the event
in the list can be specified as well. The available fields to return are:

® summary - A short summary of the event

® description - The full description of the event

® organizer - Who organized the event

® location - Where the event is located

® calendar - The name of the calendar from calendar.conf

® uid - The unique identifier associated with the event

® start - The start of the event in seconds since Unix epoch

® end - The end of the event in seconds since Unix epoch

® busystate - The busy state O=Free, 1=Tentative, 2=Busy

® attendees - A comma separated list of attendees as stored in the event and may include prefixes such as "mailto:".

When an event notification is sent to the dial plan, the CALENDAR_EVENT function may be used to return the information about the event that is causing
the notification. The fields that can be returned are the same as those from CALENDAR_QUERY_RESULT.

Write functions

To write an event to a calendar, the CALENDAR_WRITE function is used. This function takes a calendar name and also uses the same fields as
CALENDAR_QUERY_RESULT. As a write function, it takes a set of comma-separated values that are in the same order as the specified fields. For
example:

CALENDAR_WRI TE(nycal endar, sunmary, or gani zer, start, end, busystate)= "My event","mailto:jdoe@xanpl e. cont', 228383580, 228383640, 1)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 132

Calendaring Dialplan Examples

Office hours

A common business PBX scenario is would be executing dialplan logic based on when the business is open and the phones staffed. If the business is
closed for holidays, it is sometimes desirable to play a message to the caller stating why the business is closed.

The standard way to do this in asterisk has been doing a series of GotolfTime statements or time-based include statements. Either way can be tedious and
requires someone with access to edit asterisk config files.

With calendaring, the adminstrator only needs to set up a calendar that contains the various holidays or even recurring events specifying the office hours. A
custom greeting filename could even be contained in the description field for playback. For example:

[1 ncomi ng]
exten => 5555551212, 1, Answer
sane => n, Got ol f (${ CALENDAR BUSY(of fi cehour s) } ?cl osed: att endant, s, 1)
same => n(cl osed), Set (i d=${ CALENDAR_QUERY(of fi ce, ${ EPOCH} , ${ EPOCH}) })
same => n, Set (soundfil e=${ CALENDAR_QUERY_RESULT(${i d}, descri ption)})
sanme => n, Pl ayback($[${! SNULL(soundfile)} ? generic-closed :: ${soundfile}])
sane => n, Hangup

Meeting reminders

One useful application of Asterisk Calendaring is the ability to execute dialplan logic based on an event notification. Most calendaring technologies allow a
user to set an alarm for an event. If these alarms are set on a calendar that Asterisk is monitoring and the calendar is set up for event notification via
calendar.conf, then Asterisk will execute notify the specified channel at the time of the alarm. If an overrided notification time is set with the autoreminder
setting, then the notification would happen at that time instead.

The following example demonstrates the set up for a simple event notification that plays back a generic message followed by the time of the upcoming
meeting. calendar.conf.

[cal endar _j oe]

type = ical

url = https://exanpl e.conl hone/j doe/ Cal endar
user = jdoe

secret = nysecret

refresh = 15

timeframe = 600

aut orem nder = 10

channel = SIP/joe

context = cal endar_event _notify
extension = s

wai ttime = 30

extensions.conf :

[cal endar _event _notify]

exten => s, 1, Answer
sane => n, Pl ayback(you- have-a-neeting-at)
same => n, SayUni xTi me(${ CALENDAR_EVENT(start)})
sanme => n, Hangup

Writing an event

Both CalDAV and Exchange calendar servers support creating new events. The following example demonstrates writing a log of a call to a calendar.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 133

[i ncom ng]

exten => 6000, 1, Set (st art =${ EPCCH})

exten => 6000, n, Di al (SI P/joe)

exten => h, 1, Set (end=${ EPOCH})

exten => h, n, Set (CALENDAR_WRI TE(cal endar _j oe, summary, start, end)=Call from
${CALLERID(al |)}, ${start}, ${end})

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 134

Asterisk Channel Drivers

All about Asterisk and its Channel Drivers

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 135

Inter-Asterisk eXchange protocol, version 2 (IAX2)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 136

Why 1AX2?

The first question most people are thinking at this point is "Why do you need another VolP protocol? Why didn't you just use SIP or H.323?"

Well, the answer is a fairly complicated one, but in a nutshell it's like this... Asterisk is intended as a very flexible and powerful communications tool. As
such, the primary feature we need from a VolP protocol is the ability to meet our own goals with Asterisk, and one with enough flexibility that we could use
it as a kind of laboratory for inventing and implementing new concepts in the field. Neither H.323 or SIP fit the roles we needed, so we developed our own
protocol, which, while not standards based, provides a number of advantages over both SIP and H.323, some of which are:

® Interoperability with NAT/PAT/Masquerade firewalls - IAX2 seamlessly interoperates through all sorts of NAT and PAT and other
firewalls, including the ability to place and receive calls, and transfer calls to other stations.

® High performance, low overhead protocol — When running on low-bandwidth connections, or when running large numbers of calls,
optimized bandwidth utilization is imperative. IAX2 uses only 4 bytes of overhead.

® Internationalization support — IAX2 transmits language information, so that remote PBX content can be delivered in the native
language of the calling party.

® Remote dialplan polling — IAX2 allows a PBX or IP phone to poll the availability of a number from a remote server. This allows PBX
dialplans to be centralized.

® Flexible authentication — IAX2 supports cleartext, MD5, and RSA authentication, providing flexible security models for outgoing calls
and registration services.

® Multimedia protocol — IAX2 supports the transmission of voice, video, images, text, HTML, DTMF, and URL's. Voice menus can be
presented in both audibly and visually.

® Call statistic gathering — IAX2 gathers statistics about network performance (including latency and jitter), as well as providing
end-to-end latency measurement.

® Call parameter communication — Caller*ID, requested extension, requested context, etc. are all communicated through the call.

® Single socket design — IAX2's single socket design allows up to 32768 calls to be multiplexed.

While we value the importance of standards based (i.e. SIP) call handling, hopefully this will provide a reasonable explanation of why we developed IAX2
rather than starting with SIP.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 137

Introduction to IAX2

This section is intended as an introduction to the Inter-Asterisk eXchange v2 (or simply IAX2) protocol. It provides both a theoretical background and
practical information on its use.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 138

IAX2 Configuration

For examples of a configuration, please see the iax.conf.sample in the /configs directory of your source code distribution.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 139

IAX2 Jitterbuffer

The new jitterbuffer

Youmustadd jitterbuffer=yes to either the [general] part of i ax. conf, orto a peer or a user. (just like the old jitterbuffer). Also, you can set max
j i tterbuffer=n,which puts a hard-limit on the size of the jitterbuffer of "n milliseconds". It is not necessary to have the new jitterbuffer on both sides of
a call; it works on the receive side only.

PLC

The new jitterbuffer detects packet loss. PLC is done to try to recreate these lost packets in the codec decoding stage, as the encoded audio is translated
to slinear. PLC is also used to mask jitterbuffer growth.

This facility is enabled by default in iLBC and speex, as it has no additional cost. This facility can be enabled in adpcm, alaw, g726, gsm, Ipc10, and ulaw
by setting genericplc = true in the plc section of codecs.conf.

Trunk Timestamps

To use this, both sides must be using Asterisk v1.2 or later. Setting t r unkt i mest anps=yes ini ax. conf will cause your box to send 16-bit timestamps
for each trunked frame inside of a trunk frame. This will enable you to use jitterbuffer for an IAX2 trunk, something that was not possible in the old
architecture.

The other side must also support this functionality, or else, well, bad things will happen. If you don't use trunk timestamps, there's lots of ways the
jitterbuffer can get confused because timestamps aren't necessarily sent through the trunk correctly.

Communication with Asterisk v1.0.x systems
You can set up communication with v1.0.x systems with the new jitterbuffer, but you can't use trunks with trunktimestamps in this communication.

If you are connecting to an Asterisk server with earlier versions of the software (1.0.x), do not enable both jitterbuffer and trunking for the involved
peers/users in order to be able to communicate. Earlier systems will not support trunktimestamps.

You may also compile chan_i ax2. ¢ without the new jitterbuffer, enabling the old backwards compatible architecture. Look in the source code for
instructions.

Testing and monitoring

You can test the effectiveness of PLC and the new jitterbuffer's detection of loss by using the new CLI command i ax2 test | osspct n. This will
simulate n percent packet loss coming in to chan_i ax2. You should find that with PLC and the new JB, 10 percent packet loss should lead to just a tiny
amount of distortion, while without PLC, it would lead to silent gaps in your audio.

i ax2 show net st at s shows you statistics for each iax2 call you have up. The columns are "RTT" which is the round-trip time for the last PING, and then
a bunch of stats for both the local side (what you're receiving), and the remote side (what the other end is telling us they are seeing). The remote stats may
not be complete if the remote end isn't using the new jitterbuffer.

The stats shown are:

® Jit: The jitter we have measured (milliseconds)

® Del: The maximum delay imposed by the jitterbuffer (milliseconds)

® Lost: The number of packets we've detected as lost.

® %: The percentage of packets we've detected as lost recently.

® Drop: The number of packets we've purposely dropped (to lower latency).
® OOO: The number of packets we've received out-of-order

® Kpkts: The number of packets we've received / 1000.

Reporting problems
There's a couple of things that can make calls sound bad using the jitterbuffer:

The JB and PLC can make your calls sound better, but they can't fix everything. If you lost 10 frames in a row, it can't possibly fix that. It really can't help
much more than one or two consecutive frames.

® Bad timestamps: If whatever is generating timestamps to be sent to you generates nonsensical timestamps, it can confuse the jitterbuffer.
In particular, discontinuities in timestamps will really upset it: Things like timestamps sequences which go 0, 20, 40, 60, 80, 34000,
34020, 34040, 34060... It's going to think you've got about 34 seconds of jitter in this case, etc.. The right solution to this is to find out
what's causing the sender to send us such nonsense, and fix that. But we should also figure out how to make the receiver more robust in
cases like this.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 140

https://wiki/pages/createpage.action?spaceKey=AST&title=plc&linkCreation=true&fromPageId=4817145

chan_iax2 will actually help fix this a bit if it's more than 3 seconds or so, but at some point we should try to think of a better way to detect
this kind of thing and resynchronize.

Different clock rates are handled very gracefully though; it will actually deal with a sender sending 20% faster or slower than you expect
just fine.

Really strange network delays: If your network "pauses" for like 5 seconds, and then when it restarts, you are sent some packets that are
5 seconds old, we are going to see that as a lot of jitter. We already throw away up to the worst 20 frames like this, though, and the
"maxjitterbuffer" parameter should put a limit on what we do in this case.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 141

mISDN

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 142

Introduction to mISDN

This package contains the mISDN Channel Driver for the Asterisk PBX. It supports every mISDN Hardware and provides an interface for Asterisk.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 143

mISDN Features

® NT and TE mode

®* PP and PMP mode

® BRI and PRI (with BNE1 and BN2E1 Cards)

® Hardware bridging

® DTMF detection in HW+mISDNdsp

® Display messages on phones (on those that support it)
® app_SendText

®* HOLD/RETRIEVE/TRANSFER on ISDN phones :)
® Allow/restrict user number presentation

® Volume control

® Crypting with mISDNdsp (Blowfish)

® Data (HDLC) callthrough

¢ Data calling (with app_ptyfork +pppd)

® Echo cancellation

® Call deflection

® Some others

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 144

mISDN Fast Installation Guide

It is easy to install mMISDN and mISDNuser. This can be done by:
You can download latest stable releases from http://www.misdn.org/downloads/

Just fetch the newest head of the GIT (mISDN project moved from CVS) In details this process described here: http://www.misdn.org/index.php/GIT
then compile and install both with:

‘ cd m SDN ; nmke &% nmke install ‘

(you will need at least your kernel headers to compile mISDN).

‘ cd m SDNuser ; make & make install ‘

Now you can compile chan_misdn, just by making Asterisk:

‘ cd asterisk ; ./configure & make && make install ‘

That's all!

Follow the instructions in the mISDN Package for how to load the Kernel Modules. Also install process described in http://www.misdn.org/index.php/Installi
ng_mISDN

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 145

http://www.misdn.org/downloads/
http://www.misdn.org/index.php/GIT
http://www.misdn.org/index.php/Installing_mISDN
http://www.misdn.org/index.php/Installing_mISDN

mISDN Pre-Requisites

To compile and install this driver, you'll need at least one mISDN Driver and the mISDNuser package. Chan_misdn works with both, the current release
version and the development (svn trunk) version of Asterisk.

You should use Kernels = 2.6.9

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 146

mISDN Configuration

First of all you must configure the mISDN drivers, please follow the instructions in the mISDN package to do that, the main config file and config script is:

letc/init.d/msdn-init and /etc/msdn-init.conf

Now you will want to configure the misdn.conf file which resides in the Asterisk config directory (normally /etc/asterisk).

misdn.conf: [general] subsection

The misdn.conf file contains a "general" subsection, and user subsections which contain misdn port settings and different Asterisk contexts.

In the general subsection you can set options that are not directly port related. There is for example the very important debug variable which you can set
from the Asterisk cli (command line interface) or in this configuration file, bigger numbers will lead to more debug output. There's also a trace file option,
which takes a path+filename where debug output is written to.

misdn.conf: [default] subsection

The default subsection is another special subsection which can contain all the options available in the user/port subsections. The user/port subsections
inherit their parameters from the default subsection.

misdn.conf: user/port subsections

The user subsections have names which are unequal to "general”. Those subsections contain the ports variable which mean the mISDN Ports. Here you
can add multiple ports, comma separated.

Especially for TE-Mode Ports there is a msns option. This option tells the chan_misdn driver to listen for incoming calls with the given msns, you can insert

a " as single msn, which leads to getting every incoming call. If you want to share on PMP TE SO with Asterisk and a phone or ISDN card you should insert
here the msns which you assign to Asterisk. Finally a context variable resides in the user subsections, which tells chan_misdn where to send incoming calls
to in the Asterisk dial plan (extension.conf).*

Dial and Options String

The dial string of chan_misdn got more complex, because we added more features, so the generic dial string looks like:

m SDN <port >[: bchannel] | g: <gr oup>/ <ext ensi on>[/ <OPTI ONSSTRI NG>]

The Optionsstring looks Like:

: <opt char ><opt ar g>: <opt char ><opt ar g>. . .

The ":" character is the delimiter. The available options are:

® a- Have Asterisk detect DTMF tones on called channel

® c - Make crypted outgoing call, optarg is keyindex

® d - Send display text to called phone, text is the optarg

® e - Perform echo cancelation on this channel, takes taps as optarg (32,64,128,256)

® el - Disable echo cancelation on this channel

® f- Enable fax detection

® h - Make digital outgoing call

® hl - Make HDLC mode digital outgoing call

® - Ignore detected DTMF tones, don't signal them to Asterisk, they will be transported inband.
® jb - Set jitter buffer length, optarg is length

® jt - Set jitter buffer upper threshold, optarg is threshold

® jn - Disable jitter buffer

® n - Disable mISDN DSP on channel. Disables: echo cancel, DTMF detection, and volume control.
® p - Caller ID presentation, optarg is either ‘allowed' or 'restricted’

® s-Send Non-inband DTMF as inband

® vr - Rx gain control, optarg is gain

® vt - Tx gain control, optarg is gain

chan_misdn registers a new dial plan application "misdn_set_opt" when loaded. This application takes the Optionsstring as argument. The Syntax is:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 147

m sdn_set _opt (<OPTI ONSSTRI NG>)

When you set options in the dialstring, the options are set in the external channel. When you set options with misdn_set_opt, they are set in the current
incoming channel. So if you like to use static encryption, the scenario looks as follows:

Phonel --> * Box 1 --> PSTN_TE PSTN_TE --> * Box 2 --> Phone2

The encryption must be done on the PSTN sides, so the dialplan on the boxes are:

® Box 1:

exten => _${CRYPT_PREFI X} X. , 1, Di al (m SDN g: out bound/ : c1)

® Box 2:

exten => ${CRYPT_MSN}, 1, m sdn_set _opt (: cl)
exten => ${CRYPT_MSN}, 2, di al (${ PHONE2})

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 148

mISDN CLI Commands

At the Asterisk cli you can try to type in:

m sdn <tab> <tab>

Now you should see the misdn cli commands:

® clean -> pid (cleans a broken call, use with care, leads often to a segmentation fault)
® send -> display (sends a Text Message to a Asterisk channel, this channel must be an misdn channel)
® set->debug (sets debug level)

® show ->

config (shows the configuration options)

channels (shows the current active misdn channels)

channel (shows details about the given misdn channels)

stacks (shows the current ports, their protocols and states)
fullstacks (shows the current active and inactive misdn channels)

® restart -> port (restarts given port (L2 Restart)) - reload (reloads misdn.conf)

You can only use "misdn send display" when an Asterisk channel is created and isdn is in the correct state. "correct state” means that you have established
a call to another phone (must not be isdn though).

Then you use it like this:

mi sdn send display m SDN/ 1/101 "Hel lo Wrld!"

where 1 is the Port of the Card where the phone is plugged in, and 101 is the msn (callerid) of the Phone to send the text to.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 149

mISDN Variables

mISDN Exports/Imports a few Variables:

®* MISDN_ADDRESS_COMPLETE : Is either set to 1 from the Provider, or you can set it to 1 to force a sending complete.*

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 150

mISDN Debugging and Bug Reports

If you encounter problems, you should set up the debugging flag, usually debug=2 should be enough. The messages are divided into Asterisk and mISDN
parts. mISDN Debug messages begin with an 'I', Asterisk messages begin with an ", the rest is clear | think.*

Please take a trace of the problem and open a report in the Asterisk issue tracker at https://issues.asterisk.org in the “"channel drivers" project,
"chan_misdn" category. Read the bug guidelines to make sure you provide all the information needed.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 151

https://issues.asterisk.org

mISDN Examples

Here are some examples of how to use chan_misdn in the dialplan (extensions.conf):

[gl obal s]
QUT_PORT=1 ; The physical Port of the Card
QUT_CROUP=Ext ernEl ; The Group of Ports defined in m sdn.conf

[m sdnl n]

exten => _X., 1, D al (m SDN ${ OUT_PORT}/ ${ EXTEN})

exten => 0X.,1,Dial (m SDN g: ${ OUT_GROUP} / ${ EXTEN: 1})

exten => _1X., 1, Dial (m SDN g: ${ OUT_GROUP} / ${ EXTEN: 1}/ : dHel | 0)

exten => _1X.,1,Dial (m SDN g: ${ OUT_GROUP} / ${ EXTEN: 1}/ : dHel | 0 Test: n)

On the last line, you will notice the last argument (Hello); this is sent as Display Message to the Phone.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 152

mISDN Known Problems

® Q: | cannot hear any tone after a successful CONNECT to the other end.
® A: You forgot to load mISDNdsp, which is now needed by chan_misdn for switching and DTMF tone detection.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 153

Local Channel

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 154

Introduction to Local Channels

In Asterisk, Local channels are a method used to treat an extension in the dialplan as if it were an external device. In essense, Asterisk will send the call
back into the dialplan as the destination of the call, versus sending the call to a device.

Two of the most common areas where Local channels are used include members configured for queues, and in use with callfiles. There are also other uses
where you want to ring two destinations, but with different information, such as different callerID for each outgoing request.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 155

Local Channel Examples

Local channels are best demonstrated through the use of an example. Our first example isn't terribly useful, but will demonstrate how Local channels can
execute dialplan logic by dialing from the Dial() application.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 156

Trivial Local Channel Example

In our dialplan (extensions.conf), we can Dial() another part of the dialplan through the use Local channels. To do this, we can use the following dialplan:

[devi ces]

exten => 201, 1, Verbose(2,Di al another part of the dialplan via the Local chan)
exten => 201, n, Verbose(2, Qutsi de channel : ${CHANNEL})

exten => 201, n, Di al (Local / 201@xt ensi ons)

exten => 201, n, Hangup()

[ext ensi ons]

exten => 201, 1, Verbose(2,Made it to the Local channel)
exten => 201, n, Verbose(2, I nsi de channel : ${CHANNEL})
exten => 201, n, Di al (Sl P/ sone- naned- ext ensi on, 30)

exten => 201, n, Hangup()

The output of the dialplan would look something like the following. The output has been broken up with some commentary to explain what we're looking at.

— Executing [201@levices: 1] Verbose("SI P/ nmy_desk_phone-00000014", "2, Dial another part of the dialplan via the
Local chan") in new stack
== Dial another part of the dialplan via the Local chan

We dial extension 201 from SIP/my_desk_phone which has entered the [devices] context. The first line simply outputs some information via the Verbose()
application.

— Executing [201@levi ces: 2] Verbose("SI P/ ny_desk_phone-00000014",
"2, Qutsi de channel: SIP/ny_desk_phone-00000014") in new stack
== Qutside channel: SIP/ny_desk_phone- 00000014

The next line is another Verbose() application statement that tells us our current channel name. We can see that the channel executing the current dialplan
is a desk phone (aptly named 'my_desk_phone').

— Executing [201@levices: 3] Dial ("SI P/ nmy_desk_phone-00000014", "Local/201@xtensions") in new stack
— Cal |l ed 201@xt ensions

Now the third step in our dialplan executes the Dial() application which calls extension 201 in the [extensions] context of our dialplan. There is no
requirement that we use the same extension number - we could have just as easily used a named extension, or some other number. Remember that we're
dialing another channel, but instead of dialing a device, we're "dialing" another part of the dialplan.

— Executing [201@xtensions: 1] Verbose("Local/201@xtensions-7cf4;2", "2, Made it to the Local
channel ") in new stack == Made it to the Local channel

Now we've verified we've dialed another part of the dialplan. We can see the channel executing the dialplan has changed to Local/201@extensions-7cf4;2.
The part '-7cf4;2" is just the unique identifier, and will be different for you.

— Executing [201@xtensions:2] Verbose("Local /201@xtensions-7cf4;2", "2, 1nside channel:
Local / 201@xt ensi ons- 7cf 4;2") in new stack
== Inside channel: Local /201@xt ensi ons-7cf4;2

Here we use the Verbose() application to see what our current channel name is. As you can see the current channel is a Local channel which we created
from our SIP channel.

— Executing [201@xtensions:3] Dial("Local/201l@xtensions-7cf4;2", "Sl|P/ sone-naned-extension,30") in new stack

And from here, we're using another Dial() application to call a SIP device configured in sip.conf as [some-named-extension].

Now that we understand a simple example of calling the Local channel, let's expand upon this example by using Local channels to call two devices at the
same time, but delay calling one of the devices.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 157

Delay Dialing Devices Example

Lets say when someone calls extension 201, we want to ring both the desk phone and their cellphone at the same time, but we want to wait about 6
seconds to start dialing the cellphone. This is useful in a situation when someone might be sitting at their desk, but don't want both devices ringing at the
same time, but also doesn't want to wait for the full ring cycle to execute on their desk phone before rolling over to their cellphone.

The dialplan for this would look something like the following:

[devi ces]

exten => 201, 1, Verbose(2, Cal | desk phone and cel | phone but wi th del ay)

exten => 201, n, Di al (Local / deskphone-201@xt ensi ons&Local / cel | phone- 201@xt ensi ons, 30)
exten => 201, n, Voi cemai | (201@lef aul t, ${| F($[${ DI ALSTATUS} = BUSY] ?b: u)})

exten => 201, n, Hangup()

[ext ensi ons]

; Dial the desk phone

ext en => deskphone-201, 1, Ver bose(2, Di al i ng desk phone of extension 201)

exten => deskphone-201, n, Di al (SI P/ 0004f 2040001) ; SIP device with MAC address
; of 0004f 2040001

; Dial the cell phone

exten => cel | phone-201, 1, Verbose(2,Di al i ng cel | phone of extension 201)

exten => cel | phone-201, n, Verbose(2,-- Waiting 6 seconds before dialing)

exten => cel | phone-201, n, Wi t (6)

exten => cel | phone-201, n, Di al (DAHDI / g0/ 14165551212)

When someone dials extension 201 in the [devices] context, it will execute the Dial() application, and call two Local channels at the same time:

Local / deskphone- 201@xt ensi ons
Local / cel | phone- 201@xt ensi ons

It will then ring both of those extensions for 30 seconds before rolling over to the Voicemail() application and playing the appropriate voicemail recording
depending on whether the ${DIALSTATUS} variable returned BUSY or not.

When reaching the deskphone-201 extension, we execute the Dial() application which calls the SIP device configured as '0004f204001' (the MAC address
of the device). When reaching the cellphone-201 extension, we dial the cellphone via the DAHDI channel using group zero (g0) and dialing phone number
1-416-555-1212.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 158

Dialing Destinations with Different Information

With Asterisk, we can place a call to multiple destinations by separating the technology/destination pair with an ampersand (&). For example, the following
Dial() line would ring two separate destinations for 30 seconds:

exten => 201, 1, Di al (SI P/ 0004f 2040001&DAHDI / g0/ 14165551212, 30)

That line would dial both the SIP/0004f2040001 device (likely a SIP device on the network) and dial the phone number 1-416-555-1212 via a DAHDI
interface. In our example though, we would be sending the same callerID information to both end points, but perhaps we want to send a different callerID to
one of the destinations?

We can send different callerIDs to each of the destinations if we want by using the Local channel. The following example shows how this is possible
because we would Dial() two different Local channels from our top level Dial(), and that would then execute some dialplan before sending the call off to the
final destinations.

[devi ces]

exten => 201, 1, NoOp()

exten => 201, n, Di al (Local / 201@ nt er nal &.ocal / 201@xt er nal , 30)

exten => 201, n, Voi cemai | (201@lef aul t, ${| F($[${ DI ALSTATUS} = BUSY] ?b: u)})
exten => 201, n, Hangup()

[internal]

exten => 201, 1, Verbose(2,Placing internal call for extension 201)
exten => 201, n, Set (CALLERI D(nane) =Fr om Sal es)

exten => 201, n, Di al (SI P/ 0004f 2040001, 30)

[external]

exten => 201, 1, Verbose(2, Pl acing external call for extension 201)
exten => 201, n, Set (CALLERI D(nane) =Acne Cl eani ng)

exten => 201, n, Di al (DAHDI / g0/ 14165551212)

With the dialplan above, we've sent two different callerIDs to the destinations:

®* "From Sales" was sent to the local device SIP/0004f2040001
® "Acme Cleaning" was sent to the remote number 1-416-555-1212 via DAHDI

Because each of the channels is independent from the other, you could perform any other call manipulation you need. Perhaps the 1-416-555-1212
number is a cell phone and you know you can only ring that device for 18 seconds before the voicemail would pick up. You could then limit the length of
time the external number is dialed, but still allow the internal device to be dialed for a longer period of time.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 159

Using Callfiles and Local Channels

Another example is to use callfiles and Local channels so that you can execute some dialplan prior to performing a Dial(). We'll construct a callfile which will
then utilize a Local channel to lookup a bit of information in the AstDB and then place a call via the channel configured in the AstDB.

First, lets construct our callfile that will use the Local channel to do some lookups prior to placing our call. More information on constructing callfiles is
located in the doc/callfiles.txt file of your Asterisk source.

Ouir callfile will simply look like the following:

Channel : Local / 201@levi ces
Application: Playback
Data: silence/1&tt-weasels

Add the callfile information to a file such as 'callfile.new' or some other appropriately named file.

Our dialplan will perform a lookup in the AstDB to determine which device to call, and will then call the device, and upon answer, Playback() the silence/1 (1
second of silence) and the tt-weasels sound files.

Before looking at our dialplan, lets put some data into AstDB that we can then lookup from the dialplan. From the Asterisk CLI, run the following command:

*CLI > dat abase put phones 201/ devi ce S| P/ 0004f 2040001

We've now put the device destination (SIP/0004f2040001) into the 201/device key within the phones family. This will allow us to lookup the device location
for extension 201 from the database.

We can then verify our entry in the database using the 'database show' CLI command:

*CLI > dat abase show / phones/ 201/ devi ce : SI P/ 0004f 2040001

Now lets create the dialplan that will allow us to call SIP/0004f2040001 when we request extension 201 from the extensions context via our Local channel.

[devi ces]

exten => 201, 1, NoOp()

exten => 201, n, Set (DEVI CE=${ DB(phones/ ${ EXTEN}/ devi ce) })

exten => 201, n, Got ol f ($[${| SNULL(${DEVI CE})}] ?hangup) ; if nothing returned,
; then hangup

exten => 201, n, D al (${ DEVI CE}, 30)

exten => 201, n(hangup(), Hangup()

Then, we can perform a call to our device using the callfile by moving it into the /var/spool/asterisk/outgoing/ directory.

‘ nv callfile.new /var/spool/asterisks/outgoi ng* ‘

Then after a moment, you should see output on your console similar to the following, and your device ringing. Information about what is going on during the
output has also been added throughout.

‘ — Attenpting call on Local/201@levices for application Playback(silence/1&t-weasels) (Retry 1) ‘

You'll see the line above as soon as Asterisk gets the request from the callfile.

— Executing [201@levices: 1] NoOp("Local /201@levi ces-ecf0;2", "") in new stack
— Executing [201@levices: 2] Set("Local/201@levices-ecf0; 2", "DEVI CE=SI P/ 0004f2040001") in new stack

This is where we performed our lookup in the AstDB. The value of SIP/0004f2040001 was then returned and saved to the DEVICE channel variable.

— Executing [201@levices: 3] Gotolf("Local/201@levi ces-ecf0;2", "0?hangup") in new stack

We perform a check to make sure ${DEVICE} isn't NULL. If it is, we'll just hangup here.

— Executing [201@levices: 4] Dial ("Local/201@levices-ecf0;2", "SI P/ 0004f 2040001, 30") in new stack
— Cal |l ed 000f 2040001
— SI P/ 0004f 2040001- 00000022 is ringi ng

Now we call our device SIP/0004f2040001 from the Local channel.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 160

https://wiki/pages/createpage.action?spaceKey=AST&title=extensions&linkCreation=true&fromPageId=4817183

SI P/ 0004f 2040001- 00000022 answer ed Local / 201@levi ces- ecf 0; 2*

We answer the call.

> Channel Local/201@levi ces-ecf0;1 was answered.
> Launchi ng Pl ayback(silence/ 1&t-weasels) on Local /201@levi ces-ecf0; 1

We then start playing back the files.

— <Local / 201@levi ces-ecf0; 1> Playing 'silence/1.slin" (language 'en')
== Spawn extension (devices, 201, 4) exited non-zero on 'Local/201@levi ces-ecfO; 2

At this point we now see the Local channel has been optimized out of the call path. This is important as we'll see in examples later. By default, the Local
channel will try to optimize itself out of the call path as soon as it can. Now that the call has been established and audio is flowing, it gets out of the way.

— <S| P/ 0004f 2040001- 00000022> Pl aying 'tt-weasel s.ulaw (|anguage 'en')
[Mar 1 13:35:23] NOTI CE[16814] : pbx_spool.c:349 attenpt_thread: Call conpleted to Local/201@levices

We can now see the tt-weasels file is played directly to the destination (instead of through the Local channel which was optimized out of the call path) and
then a NOTICE stating the call was completed.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 161

Understanding when to use (slash)n

Lets take a look at an example that demonstrates when the use of the /n directive is necessary. If we spawn a Local channel which does a Dial() to a SIP
channel, but we use the L() option (which is used to limit the amount of time a call can be active, along with warning tones when the time is nearly up), it will
be associated with the Local channel, which is then optimized out of the call path, and thus won't perform as expected.

This following dialplan will not perform as expected.

[services]
exten => 2,1, Dial (SI P/ PHONE_B, , L(60000: 45000: 15000))

[internal]
exten => 4,1, Dial (Local / 2@er vi ces)

By default, the Local channel will try to optimize itself out of the call path. This means that once the Local channel has established the call between the
destination and Asterisk, the Local channel will get out of the way and let Asterisk and the end point talk directly, instead of flowing through the Local
channel.

This can have some adverse effects when you're expecting information to be available during the call that gets associated with the Local channel. When
the Local channel is optimized out of the call path, any Dial() flags, or channel variables associated with the Local channel are also destroyed and are no
longer available to Asterisk.

We can force the Local channel to remain in the call path by utilizing the /n directive. By adding /n to the end of the channel definition, we can keep the
Local channel in the call path, along with any channel variables, or other channel specific information.

In order to make this behave as we expect (limiting the call), we would change:

[internal]
exten => 4,1, D al (Local / 2@&er vi ces)

...into the following:

[internal]
exten => 4,1, Dial (Local / 2@ervi ces/n)

By adding /n to the end, our Local channel will now stay in the call path and not go away.

Why does adding the /n option all of a suddon make the 'L’ option work? First we need to show an overview of the call flow that doesn't work properly, and
discuss the information associated with the channels:

. SIP device PHONE_A calls Asterisk via a SIP INVITE

. Asterisk accepts the INVITE and then starts processing dialplan logic in the [internal] context

. Our dialplan calls Dial(Local/2@services) - notice no /n

. The Local channel then executes dialplan at extension 2 within the [services] context

. Extension 2 within [services] then performs Dial() to PHONE_B with the line: Dial(SIP/PHONE_B,,L(60000:45000:15000))

. SIP/PHONE_B then answers the call

. Even though the L option was given when dialing the SIP device, the L information is stored in the channel that is doing the Dial() which
is the Local channel, and not the endpoint SIP channel.

8. The Local channel in the middle, containing the information for tracking the time allowance of the call, is then optimized out of the call

path, losing all information about when to terminate the call.
9. SIP/PHONE_A and SIP/PHONE_B then continue talking indefinitely.

N o b~ WDNBRE

Now, if we were to add /n to our dialplan at step three (3) then we would force the Local channel to stay in the call path, and the L() option associated with
the Dial() from the Local channel would remain, and our warning sounds and timing would work as expected.
There are two workarounds for the above described scenario:

1. Use what we just described, Dial(Local/2@services/n) to cause the Local channel to remain in the call path so that the L() option used
inside the Local channel is not discarded when optimization is performed.

2. Place the L() option at the outermost part of the path so that when the middle is optimized out of the call path, the information required to
make L() work is associated with the outside channel. The L information will then be stored on the calling channel, which is PHONE_A.
For example:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 162

[services]
exten => 2,1, Di al (SI P/ PHONE_B)

[internal]
exten => 4,1, Dial (Local / 2@&er vi ces, , L(60000: 45000: 15000)) ;

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 163

Local Channel Modifiers

There are additional modifiers for the Local channel as well. They include:

® 'n'- Adding "/n" at the end of the string will make the Local channel not do a native transfer (the "n" stands for "n"o release) upon the
remote end answering the line. This is an esoteric, but important feature if you expect the Local channel to handle calls exactly like a
normal channel. If you do not have the "no release" feature set, then as soon as the destination (inside of the Local channel) answers the
line and one audio frame passes, the variables and dial plan will revert back to that of the original call, and the Local channel will become
a zombie and be removed from the active channels list. This is desirable in some circumstances, but can result in unexpected dialplan
behavior if you are doing fancy things with variables in your call handling.

® 'j'- Adding "/j" at the end of the string allows you to use the generic jitterbuffer on incoming calls going to Asterisk applications. For
example, this would allow you to use a jitterbuffer for an incoming SIP call to Voicemail by putting a Local channel in the middle. The '
option must be used in conjunction with the 'n' option to make sure that the Local channel does not get optimized out of the call.
This option is available starting in the Asterisk 1.6.0 branch.

® 'm'- Using the "/m" option will cause the Local channel to forward music on hold (MoH) start and stop requests. Normally the Local
channel acts on them and it is started or stopped on the Local channel itself. This options allows those requests to be forwarded through
the Local channel.
This option is available starting in the Asterisk 1.4 branch.

® 'b'- The "/b" option causes the Local channel to return the actual channel that is behind it when queried. This is useful for transfer
scenarios as the actual channel will be transferred, not the Local channel.

This option is available starting in the Asterisk 1.6.0 branch.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 164

Mobile Channel

chan_mobile pages

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 165

Introduction to the Mobile Channel

Asterisk Channel Driver to allow Bluetooth Cell/Mobile Phones to be used as FXO devices, and Headsets as FXS devices.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 166

Mobile Channel Features

® Multiple Bluetooth Adapters supported.

® Multiple phones can be connected.

® Multiple headsets can be connected.

® Asterisk automatically connects to each configured mobile phone / headset when it comes in range.
® CLI command to discover bluetooth devices.

® |nbound calls on the mobile network to the mobile phones are handled by Asterisk, just like inbound calls on a Zap channel.
® CLI passed through on inbound calls.

¢ Dial outbound on a mobile phone using Dial(Mobile/device/nnnnnnn) in the dialplan.

® Dial a headset using Dial(Mobile/device) in the dialplan.

® Application MobileStatus can be used in the dialplan to see if a mobile phone / headset is connected.
® Supports devicestate for dialplan hinting.

® Supports Inbound and Outbound SMS.

® Supports ‘channel' groups for implementing ‘GSM Gateways'

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 167

Mobile Channel Requirements

In order to use chan_mobile, you must have a working bluetooth subsystem on your Asterisk box. This means one or more working bluetooth adapters, and
the BlueZ packages.

Any bluetooth adapter supported by the Linux kernel will do, including usb bluetooth dongles.

The BlueZ package you need is bluez-utils. If you are using a GUI then you might want to install bluez-pin also. You also need libbluetooth, and
libbluetooth-dev if you are compiling Asterisk from source.

You need to get bluetooth working with your phone before attempting to use chan_mobile. This means 'pairing' your phone or headset with your Asterisk
box. | dont describe how to do this here as the process differs from distro to distro. You only need to pair once per adapter.

See http://www.bluez.org for details about setting up Bluetooth under Linux.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 168

http://www.bluez.org

Mobile Channel Concepts

chan_mobile deals with both bluetooth adapters and bluetooth devices. This means you need to tell chan_mobile about the bluetooth adapters installed in
your server as well as the devices (phones / headsets) you wish to use.

chan_mobile currently only allows one device (phone or headset) to be connected to an adapter at a time. This means you need one adapter for each
device you wish to use simultaneously. Much effort has gone into trying to make multiple devices per adapter work, but in short it doesnt.

Periodically chan_mobile looks at each configured adapter, and if it is not in use (i.e. no device connected) will initiate a search for devices configured to
use this adapater that may be in range. If it finds one it will connect the device and it will be available for Asterisk to use. When the device goes out of
range, chan_mobile will disconnect the device and the adapter will become available for other devices.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 169

Configuring chan_mobile

The configuration file for chan_mobile is /etc/asterisk/mobile.conf. It is a normal Asterisk config file consisting of sections and key=value pairs.

See configs/mobile.conf.sample for an example and an explanation of the configuration.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 170

Using chan_mobile

chan_mobile.so must be loaded either by loading it using the Asterisk CLI, or by adding it to /etc/asterisk/modules.conf

Search for your bluetooth devices using the CLI command 'mobile search'. Be patient with this command as it will take 8 - 10 seconds to do the discovery.
This requires a free adapter.

Headsets will generally have to be put into 'pairing' mode before they will show up here.

This will return something like the following :-

*CLI > nobi | e search

Address Nane Usabl e Type Port

00: 12: 56: 90: 6E: 00 LG TU500 Yes Phone 4

00: 80: C8: 35: 52: 78 Toaster No Headset 0

00: 0B: 9E: 11: 74: A5 Hel lo Il Plus Yes Headset 1
00: OF: 86: OE: AE: 42 Daves Bl ackberry Yes Phone 7

This is a list of all bluetooth devices seen and whether or not they are usable with chan_mobile. The Address field contains the 'bd address' of the device.
This is like an ethernet mac address. The Name field is whatever is configured into the device as its name. The Usable field tells you whether or not the
device supports the Bluetooth Handsfree Profile or Headset profile. The Type field tells you whether the device is usable as a Phone line (FXO) or a
headset (FXS) The Port field is the number to put in the configuration file.

Choose which device(s) you want to use and edit /etc/asterisk/mobile.conf. There is a sample included with the Asterisk-addons source under
configs/mobile.conf.sample.

Be sure to configure the right bd address and port number from the search. If you want inbound calls on a device to go to a specific context, add a context=
line, otherwise the default will be used. The 'id' of the device [bitinbrackets] can be anything you like, just make it unique.

If you are configuring a Headset be sure to include the type=headset line, if left out it defaults to phone.

The CLI command 'mobile show devices' can be used at any time to show the status of configured devices, and whether or not the device is capable of
sending / receiving SMS via bluetooth.

*CLI > nobi | e show devi ces

| D Address Group Adapter Connected State SMS
headset 00: 0B: 9E: 11: AE: C6 0 blue No Init No
LGTUS50 00: E0: 91: 7F: 46:44 1 dlink No Init No

As each phone is connected you will see a message on the Asterisk console :-

Loaded chan_nobile.so => (Bl uetooth Mbile Device Channel Driver)
— Bluetooth Device blackberry has connect ed.
— Bluetooth Device dave has connected.

To make outbound calls, add something to you Dialplan like the following :- (modify to suit)

; Calls via LGTU5500
exten => _9X., 1, Di al (Mobil e/ LGTU550/ ${ EXTEN: 1}, 45)
exten => _9X., n, Hangup

To use channel groups, add an entry to each phones definition in mobile.conf like group=n where n is a number.
Then if you do something like Dial(Mobile/g1/123456) Asterisk will dial 123456 on the first connected free phone in group 1.
Phones which do not have a specific 'group=n" will be in group 0.

To dial out on a headset, you need to use some other mechanism, because the headset is not likely to have all the needed buttons on it. res_clioriginate is
good for this :-

*CLI > originate Mbil e/ headset extensi on NNNNN@ont ext

This will call your headset, once you answer, Asterisk will call NNNNN at context context

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 171

Mobile Channel Dialplan Hints

chan_mobile supports 'device status' so you can do somthing like

exten => 1234, hi nt, SI P/ 30&\bbi | e/ dave&\Wbbi | e/ bl ackberry

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 172

MobileStatus Application

chan_mobile also registers an application named MobileStatus. You can use this in your Dialplan to determine the 'state' of a device.
For example, suppose you wanted to call dave's extension, but only if he was in the office. You could test to see if his mobile phone was attached to
Asterisk, if it is dial his extension, otherwise dial his mobile phone.

exten => 40, 1, Mobi | eSt at us(dave, DAVECELL)

exten => 40, 2, Gotol f ($[" ${ DAVECELL}" = "1"]?3:5)
exten => 40, 3, Di al (ZAP/ g1/ 0427466412, 45,tT)
exten => 40, 4, Hangup

exten => 40,5, Di al (SI P/ 40, 45,tT)

exten => 40, 6, Hangup

MobileStatus sets the value of the given variable to :-

® 1 = Disconnected. i.e. Device not in range of Asterisk, or turned off etc etc
® 2= Connected and Not on a call. i.e. Free
® 3 =Connected and on a call. i.e. Busy

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 173

Mobile Channel DTMF Debouncing

DTMF detection varies from phone to phone. There is a configuration variable that allows you to tune this to your needs. e.g. in mobile.conf

[LGTU550]

addr ess=00: 12: 56: 90: 6E: 00
port =4

cont ext =i ncom ng- nobi | e
dt nf ski p=50

change dtmfskip to suit your phone. The default is 200. The larger the number, the more chance of missed DTMF. The smaller the number the more
chance of multiple digits being detected.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 174

Mobile Channel SMS Sending and Receiving

If Asterisk has detected your mobile phone is capable of SMS via bluetooth, you will be able to send and receive SMS.

Incoming SMS's cause Asterisk to create an inbound call to the context you defined in mobile.conf or the default context if you did not define one. The call
will start at extension 'sms'. Two channel variables will be available, SMSSRC = the number of the originator of the SMS and SMSTXT which is the text of
the SMS. This is not a voice call, so grab the values of the variables and hang the call up.

So, to handle incoming SMS's, do something like the following in your dialplan

[1 ncom ng- nobi | e]
exten => sns, 1, Verbose(l ncom ng SMS from ${ SMSSRC} ${ SMSTXT})
exten => sns, n, Hangup()

The above will just print the message on the console.

If you use res_jabber, you could do something like this :-

[i ncom ng- nobi | e]
exten => sns, 1, Jabber Send(transport, user @ abber. sonewhere. com SMs from ${ SVMSRC}

${ SMSTXT})
exten => sns, 2, Hangup()

To send an SMS, use the application MobileSendSMS like the following :-

exten => 99, 1, Mobi | eSendSMS(dave, 0427123456, Hel | o Wor | d)

This will send 'Hello World' via device 'dave’ to '0427123456'

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 175

Mobile Channel Debugging

Different phone manufacturers have different interpretations of the Bluetooth Handsfree Profile Spec. This means that not all phones work the same way,
particularly in the connection setup / initialisation sequence. I've tried to make chan_mobile as general as possible, but it may need modification to support
some phone i've never tested.

Some phones, most notably Sony Ericsson 'T' series, dont quite conform to the Bluetooth HFP spec. chan_mobile will detect these and adapt accordingly.
The T-610 and T-630 have been tested and work fine.

If your phone doesnt behave has expected, turn on Asterisk debugging with 'core set debug 1'.

This will log a bunch of debug messages indicating what the phone is doing, importantly the rfcomm conversation between Asterisk and the phone. This
can be used to sort out what your phone is doing and make chan_mobile support it.

Be aware also, that just about all mobile phones behave differently. For example my LG TU500 wont dial unless the phone is a the 'idle' screen. i.e. if the
phone is showing a 'menu’ on the display, when you dial via Asterisk, the call will not work. chan_mobile handles this, but there may be other phones that
do other things too...

Important: Watch what your mobile phone is doing the first few times. Asterisk wont make random calls but if chan_mobile fails to hangup for some reason
and you get a huge bill from your telco, dont blame me

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 176

Unistim

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 177

Introduction to the Unistim channel

Unified Networks IP Stimulus (UNIStim) Channel Driver for Asterisk
This is a channel driver for Unistim protocol. You can use a least a Nortel i2002, i2004 and i2050.

Following features are supported : Send/Receive CallerID, Redial, SoftKeys, SendText(), Music On Hold, Message Waiting Indication (MWI), Distinctive
ring, Transfer, Threeway call, History, Forward, Dynamic SoftKeys.

How to configure the i2004

. Power on the phone

. Wait for message "Nortel Networks"

. Press quickly the four buttons just below the LCD screen, in sequence from left to right
. If you see "Locating server", power off or reboot the phone and try again
DHCP : 0

SET IP : a free ip of your network

. NETMSK / DEF GW : netmask and default gateway

. S1IP :ip of the asterisk server

. S1 PORT : 5000

. S1ACTION: 1

. S1 RETRY COUNT : 10

. S2:same as S1

© O N A WN R

R
N B O

How to place a call
The line=> entry in unistim.conf does not add an extension in asterisk by default. If you want to do that, add extension=line in your phone context.

If you have this entry on unistim.conf :

[violet]
devi ce=006038abcdef
line => 102

then use:

exten => 2100, 1, Di al (USTM 102@i ol et)

You can display a text with :

exten => 555, 1, SendText (Sends text to client. G eetings)

Rebooting a Nortel phone
® Press mute,up,down,up,down,up,mute,9,release(red button)
Distinctive ring

1. You need to append /r to the dial string.
2. The first digit must be from 0 to 7 (inclusive). It's the 'melody" selection.
3. The second digit (optional) must be from 0 to 3 (inclusive). It's the ring volume. 0 still produce a sound.

Select the ring style #1 and the default volume :

exten => 2100, 1, Di al (USTM 102@i ol et/r1)

Select the ring style #4 with a very loud volume :

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 178

exten => 2100, 1, Di al (USTM 102@i ol et/ r43)

Country code

® You can use the following codes for country= (used for dial tone) - us fr au nl uk fi es jp no at nz tw cl se be sg il br hu It pl za pt ee mx in
de ch dk cn

® |f you want a correct ring, busy and congestion tone, you also need a valid entry in indications.conf and check if res_indications.so is
loaded.

® Janguage= is also supported but it's only used by Asterisk (for more information see http://www.voip-info.org/wiki/view/Asterisk+multi-lang
uage). The end user interface of the phone will stay in english.

Bookmarks, Softkeys

Layout

|5 2 |
| 4 1 |
| 3 0 |

® When the second letter of bookmark= is @, then the first character is used for positioning this entry

® |f this option is omitted, the bookmark will be added to the next available sofkey

® Also work for linelabel (example : linelabel="5@Line 123")

® You can change a softkey programmatically with SendText(@position@icon@label@extension) ex: SendText(@1@55@Stop
Forwd@908)

Autoprovisioning

® This feature must only be used on a trusted network. It's very insecure : all unistim phones will be able to use your asterisk pbx.

® You must add an entry called template. Each new phones will be based on this profile.

® You must set a least line=>. This value will be incremented when a new phone is registered. device= must not be specified. By default,
the phone will asks for a number. It will be added into the dialplan. Add extension=line for using the generated line number instead.

Example :
[general]
port =5000

aut oprovi si oni ng=yes

[tenpl ate]
line => 100
bookmar k=Support @23 ; Every phone will have a softkey Support

® |f afirst phone have a mac = 006038abcdef, a new device named USTM/100@006038abcdef will be created.
® |f a second phone have a mac = 006038000000, it will be named USTM/101@006038000000 and so on.

® When autoprovisioning=tn, new phones will ask for a tn, if this number match a tn= entry in a device, this phone will be mapped into.

Example:

[bl ack]
tn=1234
line => 100

® |f a user enter TN 1234, the phone will be known as USTM/100@black.

History

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 179

http://www.voip-info.org/wiki/view/Asterisk+multi-language
http://www.voip-info.org/wiki/view/Asterisk+multi-language
https://wiki/pages/createpage.action?spaceKey=AST&title=template&linkCreation=true&fromPageId=4260080

® Use the two keys located in the middle of the Fixed feature keys row (on the bottom of the phone) to enter call history.

® By default, chan_unistim add any incoming and outgoing calls in files (/var/log/asterisk/unistimHistory). It can be a privacy issue, you can
disable this feature by adding callhistory=0. If history files were created, you also need to delete them. callhistory=0 will NOT disable
normal asterisk CDR logs.

Forward

® This feature requires chan_local (loaded by default)

Generic asterisk features
You can use the following entries in unistim.conf

® Billing - accountcode amaflags

® Call Group - callgroup pickupgroup (untested)

® Music On Hold - musiconhold

® Language - language (see section Coutry Code)

® RTP NAT - nat (control ast_rtp_setnat, default = 0. Obscure behaviour)

Trunking

® |t's not possible to connect a Nortel Succession/Meridian/BCM to Asterisk via chan_unistim. Use either E1/T1 trunks, or buy UTPS
(UNISTIM Terminal Proxy Server) from Nortel.

Wiki, Additional infos, Comments :

® http://www.voip-info.org/wiki-Asterisk+UNISTIM+channels

*BSD :

® Comment #define HAVE_IP_PKTINFO in chan_unistim.c
® Set public_ip with an IP of your computer
® Check if unistim.conf is in the correct directory

Issues

® As always, NAT can be tricky. If a phone is behind a NAT, you should port forward UDP 5000 (or change general port= in unistim.conf)
and UDP 10000 (or change yourphone rtp_port=)

® Only one phone per public IP (multiple phones behind the same NAT don't work). You can either :
® Setup a VPN
® |nstall asterisk inside your NAT. You can use IAX2 trunking if you're master asterisk is outside.
® |f asterisk is behind a NAT, you must set general public_ip= with your public IP. If you don't do that or the bindaddr is invalid (or
no longer valid, eg dynamic IP), phones should be able to display messages but will be unable to send/receive RTP packets (no
sound)
® Don't forget : this work is based entirely on a reverse engineering, So you may encounter compatibility issues. At this time, | know three
ways to establish a RTP session. You can modify yourphone rtp_method= with 0, 1, 2 or 3. 0 is the default method, should work. 1 can
be used on new firmware (black i2004) and 2 on old violet i2004. 3 can be used on black i2004 with chrome.
® |f you have difficulties, try unistim debug and set verbose 3 on the asterisk CLI. For extra debug, uncomment #define DUMP_PACKET 1
and recompile chan_unistim.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 180

http://www.voip-info.org/wiki-Asterisk+UNISTIM+channels
https://wiki/pages/createpage.action?spaceKey=AST&title=general&linkCreation=true&fromPageId=4260080
https://wiki/pages/createpage.action?spaceKey=AST&title=yourphone&linkCreation=true&fromPageId=4260080
https://wiki/pages/createpage.action?spaceKey=AST&title=general&linkCreation=true&fromPageId=4260080
https://wiki/pages/createpage.action?spaceKey=AST&title=yourphone&linkCreation=true&fromPageId=4260080

Protocol information

Protocol versions

31 October 2008
UNIStim Firmware Release 3.1 for IP Phones, includes:

® 0604DCG for Phase Il IP Phones (2001, 2002 2004),

® 0621C6H for IP Phone 2007,

® 0623C6J, 0624C6J, 0625C6J and 0627C6J for IP Phone 1110, 1120E,1140E and 1150E respectively
® 062AC6J for IP Phone 1210, 1220, and 1230

27 February 2009
UNIStim Firmware Release 3.2 for IP Phones, including:

® 0604DCJ for Phase Il IP Phones (2001, 2002 & 2004),

® 0621C6M for IP Phone 2007,

® 0623C6N, 0624C6N, 0625C6N and 0627C6N for IP Phone 1110, 1120E,1140E and 1150E respectively
® 062ACG6N for IP Phone 1210, 1220, and 1230

30 June 2009
UNIStim Firmware Release 3.3 for IP Phones:

® 0604DCL for Phase Il IP Phones (2001, 2002 & 2004),

® 0621C6P for IP Phone 2007,

® 0623C6R, 0624C6R, 0625C6R and 0627C6R for IP Phone 1110, 1120E,1140E and 1150E respectively
® 062ACG6R for IP Phone 1210, 1220, and 1230

27 November 2009
UNIStim Software Release 4.0 for IP Phones, includes:

® 0621C7A for IP Phone 2007,
® 0623C7F, 0624C7F, 0625C7F and 0627C7F for IP Phone 1110, 1120E,1140E and 1150E respectively
® 062ACTF for IP Phone 1210, 1220, and 1230

28 February 2010
UNIStim Software Release 4.1 IP Deskphone Software

® 0621C7D /2007 IP Deskphone
® 0623C7J/1110 IP Deskphone
® 0624C7J/1120E IP Deskphone
® 0625C7J/ 1140E IP Deskphone
® 0627C7J/1150E IP Deskphone
® 0626C7J/ 1165E IP Deskphone
® 062AC7J /1210 IP Deskphone
® 062AC7J /1220 IP Deskphone
® 062AC7J /1230 IP Deskphone

29 2010
UNIStim Software Release 4.2 IP Deskphone Software

® 0621C7G /2007 IP Deskphone
® 0623C7M/ 1110 IP Deskphone
® 0624C7M /1120E IP Deskphone
® 0625C7M / 1140E IP Deskphone
® 0627C7M /1150E IP Deskphone
® 0626C7M / 1165E IP Deskphone
® 062AC7M /1210 IP Deskphone
® 062AC7M /1220 IP Deskphone
® 062AC7M /1230 IP Deskphone

Protocol description

Query Audio Manager
(16 xx 00 xx...)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 181

Note:

Ensure that the handshake commands

1A 04 01 08

1A 07 07 01 23 45 67

are sent to i2004 before sending the commands in column 2. (Requests
attributes of the Audio manager)

16 0500 01 00

Note: Last byte can contain any value. The message length should be 5.
If the length is wrong it is ignored e.g. send

16 04 00 01

16 06 00 01 00 03

(Requests options setting of the Audio manager)

16 05 00 02 03

Note: Last byte can contain any value. The message length should be 5.
If the length is wrong it is ignored.

(Requests Alerting selection)

16 05 00 04 OF

Note: Last byte can contain any value. The message length should be 5.
If the length is wrong it is ignored.

(Requests adjustable Rx volume information command)

16 05 00 08 00

Note: Last byte can contain any value. The message length should be 5.
If the length is wrong it is ignored.

(Requests the i2004 to send the APB's Default Rx Volume command. The
APB Number or stream based tone is provided in the last byte of the
command below)

16 05 00 10 00 (none)

16 05 00 10 01 (Audio parameter bank 1, NBHS)

16 05 00 10 02 (Audio parameter bank 2, NBHDS)

16 05 00 10 03 (Audio parameter bank 3, NBHF)

16 05 00 10 04 (Audio parameter bank 4, WBHS)

16 05 00 10 05 (Audio parameter bank 5, WBHDS)

16 05 00 10 06 (Audio parameter bank 6, WBHF)

16 05 00 10 07 (Audio parameter bank 7,)

16 05 00 10 08 (Audio parameter bank 8,)

16 05 00 10 09 (Audio parameter bank 9,)

16 05 00 10 OA (Audio parameter bank OxA,)

16 05 00 10 OB (Audio parameter bank 0xB,)

16 05 00 10 OC (Audio parameter bank 0xC,)

16 05 00 10 OD (Audio parameter bank 0xD,)

16 05 00 10 OE (Audio parameter bank OxE,)

16 05 00 10 OF (Audio parameter bank OxF,)

16 05 00 10 10 (Alerting tone)

16 05 00 10 11 (Special tones)

16 05 00 10 12 (Paging tones)

16 05 00 10 13 (Not Defined)

16 05 00 10 1x (Not Defined)

(Set the volume range in configuration message for each of the APBs
and for alerting, paging and special tones (see below) and then send
the following commands)

(Requests handset status, when NBHS is 1) connected 2) disconnected)
16 05 00 40 09

Note: Last byte can contain any value. The message length should be 5.
If the length is wrong it is ignored

(Requests headset status, when HDS is

disconnected)

16 05 00 80 0A

(Requests headset status, when HDS is connected)

16 05 00 80 0OA

Note: Last byte can contain any value. The message length should be 5.
If the length is wrong it is ignored

(Requests handset and headset status when NBHS

and HDS are disconnected)

16 05 00 CO 05

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 182

(Requests handset and headset status when NBHS
and HDS are connected)

16 05 00 CO 05

(Send an invalid message)

16 03 00

(Send an invalid message. Is this an invalid msg??)
16 06 00 22 22 22

Query Supervisory headset status

(16 03 01)

16 03 01

Audio Manager Options

(16 04 02 xx)

(Maximum tone volume is one level lower than physical maximum

Volume level adjustments are not performed locally in the i2004

Adjustable Rx volume reports not sent to the NI when volume keys are pressed
Single tone frequency NOT sent to HS port while call in progress.

Single tone frequency NOT sent to HD port while call in progress.

Automatic noise squelching disabled.

HD key pressed command sent when i2004 receives make/break sequence.)
16 04 02 00

(Maximum tone volume is set to the physical maximum)

16 04 02 01

then requests options setting of the Audio manager by sending 16 04 00 02)
(Volume level adjustments are performed locally in the i2004)

16 04 02 02

(then requests options setting of the Audio manager by sending 16 04 00 02)
(Adjustable Rx volume reports sent to the NI when volume keys are pressed)
16 04 02 04

(then requests options setting of the Audio manager by sending 16 04 00 02)
(Single tone frequency sent to HS port while call in progress)

16 04 02 08

(then requests options setting of the Audio manager by sending 16 04 00 02)
(Single tone frequency sent to HD port while call in progress)

16 04 02 10

(then requests options setting of the Audio manager by sending 16 04 00 02)
(Automatic noise squelching enabled.)

16 04 02 20

(then requests options setting of the Audio manager by sending 16 04 00 02)
(Headset Rfeature Key Pressed command sent when i2004 receives
make/break sequence.)

16 04 02 40

(then requests options setting of the Audio manager by sending 16 04 00 02)
(In this case both bit 1 and bit 3 are set, hence Volume level

adjustments are performed

locally in the i2004 and Single tone frequency sent to HS port while

call in progress.)

16 04 02 0A

Mute/un-mute

(16 xx 04 xx...)

(In this case two phones are conneted. Phone 1 is given the ID
47.129.31.35 and phone 2

is given the ID 47.129.31.36. Commands are sent to phone 1)

(TX is muted on stream ID 00)

16 05 04 01 00

(TX is un-muted on stream ID 00)

16 05 04 00 00

(RX is muted on stream ID 00)

16 05 04 03 00

(RX is un-muted on stream 1D 00)

16 05 04 02 00

(TX is muted on stream ID 00, Rx is un-muted on stream ID 00)
16 07 04 01 00 02 00

(TX is un-muted on stream ID 00, Rx is muted on stream ID 00)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 183

16 07 04 00 00 03 00
(TX is un-muted on stream ID 00, Rx is un-muted on stream ID 00)
16 07 04 00 00 02 00

Transducer Based tone on

(16 04 10 xx)

(Alerting on)

16 04 10 00

(Special tones on, played at down loaded tone volume level)

16 04 10 01

(paging on)

16 04 10 02

(not defined)

16 04 10 03

(Alerting on, played at two steps lower than down loaded tone volume level)
16 04 10 08

(Special tones on, played at two steps lower than down loaded tone volume level)
16 04 10 09

Transducer Based tone off

(16 04 10 xx)

16 04 11 00 (Alerting off)

16 04 11 01 (Special tones off)
16 04 11 02 (paging off)

16 04 11 03 (not defined)

Alerting tone configuration

(16 05 12 xx xx)

(Note: Volume range is set here for all tones. This should be noted

when testing the volume level message)

(HF speaker with different warbler select values, tone volume range set to max)
16 0512 10 00

16 05 12 11 OF

16 05 12 12 OF

16 05 12 13 OF

16 05 12 14 OF

16 05 12 15 OF

16 05 12 16 OF

16 0512 17 OF

(HF speaker with different cadence select values, tone volume range set to max)
16 05 12 10 OF

16 0512 10 1F

16 05 12 10 2F

16 0512 10 3F

16 05 12 10 4F

16 05 12 10 5F

16 05 12 10 6F

16 05 12 10 7F (configure cadence with alerting tone cadence download
message before sending this message)

(HS speaker with different warbler select values, tone volume level set to max)
16 05 12 00 OF

16 05 12 01 OF

16 05 12 02 OF

16 05 12 03 OF

16 05 12 04 OF

16 05 12 05 OF

16 05 12 06 OF

16 05 12 07 OF

(HS speaker with different cadence select values, tone volume range set to max)
16 05 12 00 OF

16 05 12 00 1F

16 05 12 00 2F

16 05 12 00 3F

16 05 12 00 4F

16 05 12 00 5F

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 184

16 05 12 00 6F

16 05 12 00 7F (configure cadence with alerting tone cadence download
message before sending this message)

(HD speaker with different warbler select values, tone volume range set to max)
16 05 12 08 OF

16 05 12 09 OF

16 05 12 OA OF

16 05 12 0B OF

16 05 12 OC OF

16 05 12 0D OF

16 05 12 OE OF

16 05 12 OF OF

(HD speaker with different cadence select values, tone volume level set to max)
16 05 12 08 OF

16 05 12 08 1F

16 05 12 08 2F

16 05 12 08 3F

16 05 12 08 4F

16 05 12 08 5F

16 05 12 08 6F

16 05 12 08 7F (configure cadence with alerting tone cadence download
message before sending this message)

Special tone configuration

(16 06 13 xx Xx)

(Note: Volume range is set here for all tones. This should be noted
when testing the volume level message)

(HF speaker with different tones, tone volume range is varied)
16 06 13 10 00 01

16 06 1310 01 01

16 06 13 10 08 01

16 06 13 10 02 07

16 06 13 10 03 07

16 06 1310 04 11

16 06 1310 05 11

16 06 13 10 06 18

16 06 13 10 07 18

16 06 13 10 08 1F

(HF speaker with different cadences and tones; tone volume level is varied)
16 06 13 10 00 01

16 06 1310 10 01

16 06 13 10 20 07

16 06 13 10 30 07

16 06 1310 40 11

16 06 13 10 50 11

16 06 13 10 60 18

16 06 13 10 70 18 (configure cadence with special tone cadence
download message before sending this message)

(HS speaker with different tones, tone volume range is varied)
16 06 13 00 00 01

16 06 13 00 01 01

16 06 13 00 02 07

16 06 13 00 03 07

16 06 13 00 04 11

16 06 13 00 05 11

16 06 13 00 06 18

16 06 13 00 07 18

(HS speaker with different cadences and tones; tone volume range is varied)
16 06 13 00 00 01

16 06 13 00 10 01

16 06 13 00 20 07

16 06 13 00 30 07

16 06 13 00 40 11

16 06 13 00 50 11

16 06 13 00 60 18

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 185

16 06 13 00 70 18 (configure cadence with special tone cadence
download message before sending this message)

(HD speaker with different tones, tone volume range is varied)
16 06 13 08 00 01

16 06 13 08 01 01

16 06 13 08 02 07

16 06 13 08 03 07

16 06 13 08 04 11

16 06 13 08 05 11

16 06 13 08 06 18

16 06 13 08 07 18

(HD speaker with different cadences and tones; tone volume range is varied)
16 06 13 08 00 01

16 06 13 08 10 01

16 06 13 08 20 07

16 06 13 08 30 07

16 06 13 08 40 11

16 06 13 08 50 11

16 06 13 08 60 18

16 06 13 08 70 18 (configure cadence with special tone cadence
download message before sending this message)

Paging tone configuration

(16 05 14 xx xx)

(Note: Volume range is set here for all tones. This should be noted
when testing the volume level message)

(HF speaker with different cadence select values, tone volume range set to max)
16 05 14 10 OF

16 0514 10 1F

16 05 14 10 2F

16 05 14 10 3F

16 05 14 10 4F

16 05 14 10 5F

16 05 14 10 6F

16 05 14 10 7F (configure cadence with paging tone cadence download
message before sending this message)

(HS speaker with different cadence select values, tone volume range set to max)
16 05 14 00 OF

16 05 14 00 1F

16 05 14 00 2F

16 05 14 00 3F

16 05 14 00 4F

16 05 14 00 5F

16 05 14 00 6F

16 05 14 00 7F (configure cadence with paging tone cadence download
message before sending this message)

(HD speaker with different cadence select values, tone volume level set to max)
16 05 14 08 OF

16 05 14 08 1F

16 05 14 08 2F

16 05 14 08 3F

16 05 14 08 4F

16 05 14 08 5F

16 05 14 08 6F

16 05 14 08 7F (configure cadence with paging tone cadence download
message before sending this message)

Alerting Tone Cadence Download

(16 xx 15 XX XX...)

16 08 15 00 OA Of 14 1E

(.5 sec on, 0.75 sec off; 1 sec on 1.5 sec off, cyclic)

16 0C 15 01 OA 0f 14 1E 05 0A 0A 14

(.5 sec on, 0.75 sec off; 1 sec on 1.5 sec off; 0.25sec on, 0.5sec
off; 0.5 sec on, 1 sec off , one shot)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 186

Special Tone Cadence Download

(16 xx 16 XX XX...)

16 05 16 0OA 10

(125ms on, 200 ms off)

16 09 16 0A 10 14 1E

(125ms on, 200 ms off; 250ms on, 375ms off)

Paging Tone Cadence Download

(16 xx 17 XX XX...)

16 06 17 01 OA 10

(125ms on, 200 ms off, 250HZ)

16 06 17 04 05 10

(62.5ms on, 200 ms off, 500 Hz)

16 09 17 01 0A 10 10 14 1E

(125ms on, 200 ms off; 250ms on, 375ms off, 250 Hz, 100Hz)

16 0C 17 01 0A 1004 14 1E 10 0A 10

(125ms on, 200 ms off; 250ms on, 375ms off; 125ms on, 200 ms off,
250Hz, 1000Hz, 500 Hz)

16 0C 17 01 1E 10 12 3c 1E 10 28 10

(375ms on, 200 ms off; 750ms on, 375ms off; 500ms on, 200 ms off,
250Hz, (333Hz,1000Hz), 500 Hz)

Transducer Based Tone Volume Level

(16 04 18 xx)

(Ensure that the volume range is set properly in the alerting, special
and paging

tone configuration e.g if the volume range is set to zero, this
message will always output

max volume) (Different volume level for alerting tone. Note: Send the
command below

and then send the alerting on command and alerting off commands)
16 04 18 00

16 04 18 10

16 04 18 20

16 04 18 30

16 04 18 40

16 04 18 50

16 04 18 60

16 04 18 70

16 04 18 80

16 04 18 90

16 04 18 FO

(HF:Volume range for alerting tone is changed here using these commands)
16 05 12 10 OF

16 05121000

16 0512 10 04

(HD:Volume range for alerting tone is changed here using these commands)
16 05 12 08 OF

16 05 12 08 00

16 05 12 08 04

(Different volume level for special tone)

16 04 18 01

16 0418 11

16 04 18 21

16 04 18 31

16 04 18 41

16 04 18 51

16 04 18 61

16 0418 71

16 04 18 81

16 04 18 91

16 04 18 A1

16 04 18 B1

16 04 18 C1

16 04 18 D1

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 187

16 04 18 E1

16 04 18 F1

(HF:Volume range for special tone is changed here using these commands)
16 06 13 10 20 07

16 06 13 10 25 07

16 06 13 10 2F 07

(HD:Volume range for special tone is changed here using these commands)
16 06 13 08 20 07

16 06 13 08 25 07

16 06 13 08 2F 07

(Different volume level for paging tone)

16 04 18 02

16 04 18 12

16 04 18 22

16 04 18 32

16 04 18 42

16 04 18 52

16 04 18 62

16 04 18 72

16 04 18 82

16 04 18 92

16 04 18 F2

(HF:Volume range for paging tone is changed here using these commands)
16 05 14 10 OF

16 06 14 10 00

16 06 14 10 04

(HD:Volume range for paging tone is changed here using these commands)
16 06 14 08 OF

16 06 14 08 00

16 06 14 08 04

Alerting Tone Test

(16 04 19 xx)

(tones 667Hz, duration 50 ms and 500Hz duration 50 ms)

16 04 19 00

(tones 333Hz, duration 50 ms and 250Hz duration 50 ms)

16 04 19 01

(tones 333 Hz + 667 Hz duration 87.5 ms and 500Hz + 1000Hz duration 87.5 ms)
16 04 19 02

(tones 333 Hz, duration 137.5 ms; 500Hz duration 75 ms; 667Hz duration 75 ms)
16 04 19 03

(tones 500Hz, duration 100 ms and 667Hz duration 100 ms)

16 04 19 04

(tones 500Hz, duration 400 ms and 667Hz duration 400 ms)

16 04 19 05

(tones 250Hz, duration 100 ms and 333Hz duration 100 ms)

16 04 19 06

(tones 250Hz, duration 400 ms and 333 Hz, duration 400ms)

16 04 19 07

Visual Transducer Based Tones Enable
(16 04 1A xx)

Visual tone enabled

16 04 1A 01

(Visual tone disabled)

16 04 1A 00

Stream Based Tone On

(16 06 1B xx XX XX)

(Dial tone is summed with data on Rx stream 00 at volume level -3dBm0)
16 06 1B 00 00 08

(Dial tone replaces the voice on Rx stream 00 at volume level -6dBm0)
16 06 1B 80 00 10

(Dial tone is summed with voice on Tx stream 00 at volume level -3dBm0)
16 06 1B 40 00 08

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 188

(Dial tone replaces the voice on Tx stream 00 at volume level -3dBm0)
16 06 1B CO 00 08

(Line busy tone is summed with data on Rx stream 00 at volume level -3dBm0)
16 06 1B 02 00 08

(Line busy tone replaces the voice on Rx stream 00 at volume level -6dBm0)
16 06 1B 82 00 10

(Line busy tone is summed with voice on Tx stream 00 at volume level -3dBm0)
16 06 1B 42 00 08

(Line busy tone replaces the voice on Tx stream 00 at volume level -3dBm0)

16 06 1B C2 00 08

(ROH tone is summed with data on Rx stream 00 at volume level -3dBm0)
16 06 1B 05 00 08

(ROH tone replaces the voice on Rx stream 00 at volume level -6dBmO)

16 06 1B 85 00 10

(ROH tone is summed with voice on Tx stream 00 at volume level -3dBmO)
16 06 1B 45 00 08

(ROH tone replaces the voice on Tx stream 00 at volume level -3dBm0)

16 06 1B C5 00 08

(Recall dial tone is summed with data on Rx stream 00 at volume level -3dBm0)
16 06 1B 01 00 08

(Recall dial tone replaces the voice on Rx stream 00 at volume level -6dBm0)
16 06 1B 81 00 10

(Reorder tone is summed with data on Rx stream 00 at volume level -3dBm0)
16 06 1B 03 00 08

(Reorder dial tone replaces the voice on Rx stream 00 at volume level -6dBm0)
16 06 1B 83 00 10

(Audible Ringing tone is summed with data on Rx stream 00 at volume

level -3dBm0)

16 06 1B 04 00 08

(Audible Ringing tone replaces the voice on Rx stream 00 at volume level -6dBm0)
16 06 1B 84 00 10

(Stream based tone ID 06 is summed with data on Rx stream 00 at volume
level -3dBmoO;

Tone ID 06 is downloaded using both the frequency and cadence down
load commands)

16 06 1B 06 00 08

(Stream based tone ID 06 replaces the voice on Rx stream 00 at volume
level -6dBmO0)

16 06 1B 86 00 10

(Stream based tone ID OF is summed with data on Rx stream 00 at volume
level -3dBmO;

Tone ID 0xOF is downloaded using both the frequency and cadence down
load commands)

16 06 1B OF 00 08

(Stream based tone ID OF replaces the voice on Rx stream 00 at volume
level -6dBmO0)

16 06 1B 8F 00 10

Stream Based Tone Off

(16 05 1C xx xx)

(Dial tone is turned off on Rx stream 00)

16 05 1C 00 00

(Dial tone is turned off on Tx stream 00)

16 05 1C 40 00

(Line busy tone is turned off on Rx stream 00)
16 05 1C 02 00

(Line busy tone is turned off on Tx stream 00)
16 05 1C 42 00

(ROH tone is turned off on Rx stream 00)

16 05 1C 05 00

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 189

(ROH tone is turned off on Tx stream 00)

16 05 1C 45 00

(Recall dial tone is turned off on Rx stream 00)

16 05 1C 01 00

(Reorder tone is turned off on Rx stream 00)

16 05 1C 03 00

(Audible Ringing tone is turned off on Rx stream 00)

16 05 1C 04 00

(Stream based tone ID 06 is turned off on Rx stream 00)
16 05 1C 06 00

(Stream based tone ID OF is turned off on Rx stream 00)
16 05 1C OF 00

Stream Based Tone Frequency Component List Download (up to 4
frequencies can be specified)

(16 xx 1D xx...)

Note: Frequency component download and cadence download commands sent
to the i2004 first.

Then send the stream based tone ID on command to verify that tones are
turned on.

16 06 1D 06 2C CC

(1400Hz)

16 08 1D 07 2C CC 48 51

(1400 Hz and 2250Hz)

Stream Based Tone Cadence Download (up to 4 cadences can be specified)
(16 xx 1E xx...)

Note: Frequency component download and cadence download commands sent
to the i2004 first. Then

send the stream based tone ID on command to verify that tones are turned on.
16 06 1E 26 0A OA

(200 ms on and 200 ms off with tone turned off after the full sequence)

16 08 1E 07 OA OA 14 14

(20 ms on and 20 ms off for first cycle, 400 ms on and 400 ms off fo

rthe second cycle with sequence repeated)

16 05 1E 26 0A

(In this case tone off period is not specified hence tone is played

until stream based

tone off command is received.

Select Adjustable Rx Volume
(16 04 20 xx)

16 04 20 01

(Audio parameter block 1)
16 04 20 03

(Audio parameter block 3)
16 04 20 08

(Alerting Rx volume)

16 04 20 09

(Special tone Rx volume)
16 04 20 Oa

(Paging tone Rx volume)

Set APB's Rx Volume Levels

(16 05 21 xx xx)

16 0521 01 25

(? Rx volume level 5 steps louder than System RLR)
16 0521 01 05

(? Rx volume level 5 steps quieter than System RLR)

Change Adjustable Rx Volume

16 03 22

(Rx volume level is one step quieter for the APB/tones selected
through Select Adjustable Rx Volume command)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 190

16 03 23
(Rx volume level is one step louder for the APB/tones selected through
Select Adjustable Rx Volume command)

Adjust Default Rx Volume

(16 04 24 xx)

16 04 24 01

(Default Rx volume level is one step quieter for the APB 1)
16 04 25 01

(Default Rx volume level is one step louder for the APB 1)

Adjust APB's Tx and/or STMR Volume Level

(16 04 26 xx)

(First ensure that the Tx and STMR volume level are set to maximum by
repeatedly (if needed) sending the command

16 04 26 F2 to APB2.

Rest of the commands are sent to i2004 individually and then the query
command below is used to verify

if the commands are sent correctly) (Enable both Tx Vol adj. and STMR
adj; Both Tx volume and STMR volume

are one step louder on APB 2)

16 04 26 F2

(Enable both Tx Vol adj. and STMR adj; Both Tx volume and STMR volume
are one step quieter on APB 2)

16 04 26 A2

(Enable Tx Vol adj. and disable STMR adj; Tx volume is one step louder
on APB 3)

16 04 26 C3

(Enable Tx Vol adj. and disable STMR adj; Tx volume is one step
quieter on APB 3)

16 04 26 83

(Disable both Tx Vol adj. and STMR adj on APB 1)

16 04 26 01

Query APB's Tx and/or STMR Volume Level
(16 04 27 XX)

(Query Tx volume level and STMR volume level on APB 2)
16 04 27 32

(Query STMR volume level on APB 1)

16 04 27 11

(Query STMR volume level on APB 2)

16 04 27 12

(Query STMR volume level on APB 3)

16 04 27 13

(Query Tx volume level on APB 1)

16 04 27 21

(Query Tx volume level on APB 2)

16 04 27 22

(Query Tx volume level on APB 3)

16 04 27 23

APB Download
(16 xx-1F xx...)
16 09 28 FF AA 88 03 00 00

Open Audio Stream

(16 xx 30 xx...)

(If Audio stream is already open it has to be closed before another
open audio stream command is sent)

16 15 30 00 00 00 00 01 00 13 89 00 00 13 89 00 00 2F 81 1F 23
(Open G711 ulaw Audio stream to 2F.81.1F.9F)

16 15 30 00 00 08 08 01 00 13 89 00 00 13 89 00 00 2F 81 1F 23
(Open G711 Alaw Audio stream to 2F.81.1F.9F)

16 153000 00 12 12 01 00 13 89 00 00 13 89 00 00 2F 81 1F 23

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 191

(Open G729 Audio stream to 2F.81.1F.9F)
16 15 30 00 00 04 04 01 00 13 89 00 00 13 89 00 00 2F 81 1F 23
(Open G723? ulaw Audio stream to 2F.81.1F.9F)

Close Audio Stream
(16 05 31 xx Xx)
16 05 31 00 00

Connect Transducer

(16 06 32 xx XX XX)

16 06 32 CO 11 00

(Connect the set in Handset mode with no side tone)
16 06 32 C0 01 00

(Connect the set in Handset mode with side tone)

16 06 32 C1 12 00

(Connect the set in Headset mode with no side tone)
16 06 32 C1 02 00

(Connect the set in Headset mode with side tone)

16 06 32 C2 03 00

(Connect the set in Hands free mode)

Frequency Response Specification

(16 xx 33 xx...)

Filter Block Download 16 xx 39 xx

Voice Switching debug 16 04 35 11

(Full Tx, Disable switch loss bit)

16 04 35 12

(Full Rx, Disable switch loss bit)

Voice Switching Parameter Download 16 08 36 01 2D 00 00 02

(APB 1, AGC threshold index 0, Rx virtual pad 0, Tx virtual pad 0,
dynamic side tone enabled)

Query RTCP Statistics 16 04 37 12

(queries RTCP bucket 2, resets RTCP bucket info.)

Configure Vocoder Parameters 16 OA 38 00 00 CB 00 EO 00 A0

(For G711 ulaw 20 ms, NB)

16 OA 38 00 08 CB 00 EO 00 A0

(G711 Alaw 20 ms, NB)

16 0OA 38 00 00 CB 01 EO 00 AO

(For G711 ulaw 10 ms, WB)

16 OA 38 00 08 CB 01 EO 00 AO

(G711 Alaw 10 ms, WB)

16 08 380012 C1 C7 C5

(For G729 VAD On, High Pass Filter Enabled, Post Filter Enabled)

16 09380004 C9C5C7C1

(G723 VAD On, High Pass Filter Enabled, Post Filter Enabled at 5.3 KHz)
16 09 38 00 04 CO C7 C5 C9

(G723 VAD Off, High Pass Filter Enabled, Post Filter Enabled at 5.3 KHz)
16 09380004 C1C5C7C8

(G723 VAD On, High Pass Filter Enabled, Post Filter Enabled at 6.3 KHz)
16 09 38 00 04 CO C7 C5C8

(G723 VAD Off, High Pass Filter Enabled, Post Filter Enabled at 6.3 KHz)
Query RTCP Bucket's SDES Information (39 XX) (The first nibble in the
last byte indicates the bucket ID)

16 04 39 21

16 04 39 22

16 04 39 23

16 04 39 24

16 04 39 25

16 04 39 26

16 04 39 27

16 04 39 01
16 04 39 12
16 04 39 23
16 04 39 34
16 04 39 45

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 192

16 04 39 56
16 04 39 67

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 193

Skinny

chan_skinny stuff

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 194

Skinny call logging
Page for details about call logging.

Calls are logged in the devices placed call log (directories->Place Calls) when a call initially connects to another device. Subsequent changes in the device
(eg forwarded) are not reflected in the log.

If a call is not placed to a channel they will not be recorded in the log. eg a call to voicemail will not be recorded. You can force these to be recorded by
including progress(), then ringing() in the dialplan.

Example (This will produce a logged call):

exten => 100, 1, NoOp

exten => 100, n, Progress

exten => 100, n, R ngi ng

exten => 100, n, Voi cemai | Mai n(${ CALLERI D(num) @rycont ext, s)

Example (This will not):

exten => 100, 1, NoOp
exten => 100, n, Voi cemai | Mai n(${ CALLERI D(nun) @rycont ext, s)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 195

Skinny Dev Notes

A spot to keep development notes.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 196

Keepalives
Been doing some mucking around with cisco phones. Things found out about keepalives documented here.
It appears the minimum keepalive is 10. Any setting below this reverts to the the device setting 10 seconds.

Keepalive timings seem to vary by device type (and probably firmware).

Device F/Ware Proto 1st KA Behavior w/ no response

7960 7.2(3.0) 6 15 Sec KA, KA, KA, UNREG

7961 8.5.4(1.6 17 As set KA, KA*2, KA*2, UNREG

7920 4.0-3-2 5 As set KA, KA, KA, KA+Reset
Conn

For example, with keepalive set to 20:

® the 7960 will UNREG in 75 sec (ka@15, ka@35, ka@55, unreg@75) (straight after registration); or
® the 7960 will UNREG in 80 sec (ka@20, ka@40, ka@60, unreg@80) (after 1 keepalive ack sent);
® the 7961 will UNREG in 120 sec (ka@20, ka@60, ka@100, unreg@120).

Other info:

® Devices appear to consider themselves still registered (with no indication provided to user) until the unregister/reset conn occurs.

® Devices generally do not respond to keepalives or reset their own timings (see below for exception)

® After unregister (but no reset obviously) keepalives are still sent, further, the device now responds to keepalives with a keepalive_ack, but
this doesn't affect the timing of their own keepalives.

chan_skinny impact:
® need to revise keepalive timing with is currently set to unregister at 1.1 * keepalive time
Testing wifi (7920 with keepalive set to 20), immediately after a keepalive:

® removed from range for 55 secs - at 58 secs 3 keepalives received, connection remains.

® removed from range for 65 secs - at about 80 secs, connection reset and device reloads.

® server set to ignore 2 keepalives - 3rd keepalive at just under 60secs, connection remains.

® server set to ignore 3 keepalives - 4th keepalive at just under 80secs, connection reset by device anyway.
® Jooks like timing should be about 3*keepalive (ie 60secs), maybe 5*keepalive for 7961 (v177?)

More on ignoring keepalives at the server (with the 7920) (table below)

® if keepalive is odd, the time used is rounded up to the next even number (ie 15 will result in 16 secs)
® the first keepalive is delayed by 1 sec if keepalive is less than 30, 15 secs if less than 120, else 105 secs
® these two lead to some funny numbers

® if setto 119, the first will be at 135 secs (119 rounded up + 15), and subsequent each 120 secs

® if setto 120, the first will be at 225 secs (120 not rounded + 105), and subsequent each 120 secs

® similarly if set to 29, the first will be 31 then 30, where if set to 30 the first will be 45 then 30

® only tested out to 600 secs (where the first is still delayed by 105 secs)

® device resets the connection 20 secs after the 3rd unreplied keepalive

® keepalives below 20 seem unreliable in that they do not reset the connection

® above 20secs and after the first keepalive, the device will reset at (TRUNC((KA+1)/2)*2)*3+20

® before the first keepalive, add 1 if KA<30, add 15 if KA<120, else add 105

® actually, about a second earlier. After the first missed KA, the next will be about a second early

® not valid for other devices

Set First (s) Then (s) Packets (#) Reset (s)
20 21 20 3 20
25 27 26 3 20
26 27 26 3 20
29 31 30 3 20

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 197

30

60

90

119

120

600

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

45

75

105

135

225

705

30

60

90

120

120

600

20

20

20

20

20

20

198

Skinny device stuff
Collection of notes on weird device stuff.
7937 Conference Phone

* firmware appears to have 10 speedial buttons hardcoded into the firmware.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 199

Asterisk Configuration

The top-level page for all things related to Asterisk configuration

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 200

General Configuration Information

The top-level page for general (typical) Asterisk configuration information.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 201

Configuration Parser

Introduction

The Asterisk configuration parser in the 1.2 version and beyond series has been improved in a number of ways. In addition to the realtime architecture, we
now have the ability to create templates in configuration files, and use these as templates when we configure phones, voicemail accounts and queues.
These changes are general to the configuration parser, and works in all configuration files.

General syntax

Asterisk configuration files are defined as follows:

[section]
| abel = val ue
| abel 2 = val ue

In some files, (e.g. mgcp.conf, dahdi.conf and agents.conf), the syntax is a bit different. In these files the syntax is as follows:

[section]

| abel 1 = val uel
| abel 2 = val ue2
obj ect => nane

| abel 3 = val ue3
| abel 2 = val ue4
obj ect 2 => nane2

In this syntax, we create objects with the settings defined above the object creation. Note that settings are inherited from the top, so in the example above

object2 has inherited the setting for "labell" from the first object.
For template configurations, the syntax for defining a section is changed to:

[section] (options)
| abel = val ue

The options field is used to define templates, refer to templates and hide templates. Any object can be used as a template.
No whitespace is allowed between the closing "]"* and the parenthesis "(".

Comments

All lines that starts with semi-colon ";" is treated as comments and is not parsed.
The "~ 33 er-fora-muti-ine-cemment—Everythingafterthat-markerwillk-b

directly after the end-marker.

=" is found. Parsing begins

:This is a conment

| abel = val ue

;-- This is

a coment -;

;- Comment --; exten=> 1000, 1,dial (SIP/Ilisa)

Including other files

In all of the configuration files, you may include the content of another file with the #include statement. The content of the other file will be included at the
row that the #include statement occurred.

#i ncl ude myusers. conf

You may also include the output of a program with the #exec directive, if you enable it in asterisk.conf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 202

In asterisk.conf, add the execincludes = yes statement in the options section:

[opti ons]
execi ncl udes=yes

The exec directive is used like this:

#exec /usr/local/bin/nmyasteriskconfigurator.sh

Adding to an existing section

[section]
| abel = val ue

[section] (+)
| abel 2 = val ue2

In this case, the plus sign indicates that the second section (with the same name) is an addition to the first section. The second section can be in another
file (by using the #include statement). If the section name referred to before the plus is missing, the configuration will fail to load.

Defining a template-only section

[section](!)
| abel = val ue

The exclamation mark indicates to the config parser that this is a only a template and should not itself be used by the Asterisk module for configuration. The
section can be inherited by other sections (see section "Using templates” below) but is not used by itself.

Using templates (or other configuration sections)

[section] (nane[, nane])
| abel = val ue

The name within the parenthesis refers to other sections, either templates or standard sections. The referred sections are included before the configuration
engine parses the local settings within the section as though their entire contents (and anything they were previously based upon) were included in the new
section. For example consider the following:

[foo]

di sal | on=al
al | on=ul aw
al | on=al aw

[bar]
al | ow=gsm
al | ow=g729

perm t=192.168.2.1
[baz] (f oo, bar)
type=friend

perm t=192.168. 3.1
cont ext =i ncom ng host =bnm

The [baz] section will be processed as though it had been written in the following way:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 203

[baz]

di sal | ow=al

al | ow=ul aw

al | ow=al aw

al | ow=gsm

al | ow=g729

perm t=192.168.2. 1
type=friend

perm t=192. 168. 3. 1

cont ext =i ncom ng host =bnm

It should also be noted that there are no guaranteed overriding semantics, meaning that if you define something in one template, you should not expect to
be able to override it by defining it again in another template.

Additional Examples
(in top-level sip.conf)

[defaul ts]

type=friend

nat =yes

qual i fy=on

dt nf rode=rf c2833

di sal | ow=al

al | ow=al aw

#i ncl ude accounts/*/sip.conf

(in accounts/customer1/sip.conf)

[def -custoner1] (!, defaul ts)
secret=this_is_not_secret
cont ext =f rom cust oner 1

cal | eri d=Custonmer 1 <300>
account code=0001

[phonel] (def - cust omer 1)
mai | box=phonel@ust oner 1

[phone2] (def - cust oner 1)
mai | box=phone2@ust oner 1

This example defines two phones - phonel and phone2 with settings inherited from "def-customerl". The "def-customerl" is a template that inherits from
"defaults”, which also is a template.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 204

The asterisk.conf file

Asterisk Main Configuration File

Below is a sample of the main Asterisk configuration file, asterisk.conf. Note that this file is not provided in sample form, because the Makefile creates it

when needed and does not touch it when it already exists.

[directories]
; Make sure these directories have the right perm ssions if not
; running Asterisk as root

; Where the configuration files (except for this one) are |ocated
astetcdir => /etc/asterisk

; Where the Asterisk | oadabl e nodul es are | ocated
astnmoddir => /usr/lib/asterisk/nodul es

; Where additional 'library' elenents (scripts, etc.) are |ocated
astvarlibdir => /var/lib/asterisk

; Where AG scripts/prograns are | ocated
astagidir => /var/lib/asterisk/agi-bin

; Where spool directories are |ocated

; Voicenumil, nmonitor, dictation and other apps will create files here
; and outgoing call files (used with pbx_spool) mnmust be placed here

ast spool dir => /var/spool /asterisk

; Where the Asterisk process ID (pid) file should be created
astrundir => /var/run/asterisk

; Where the Asterisk log files should be created
astlogdir => /var/log/asterisk

[opti ons]

; Under "options" you can enter configuration options
;that you also can set with conmand |ine options

; Verbosity level for logging (-v) verbose = 0

; Debug: "No" or value (1-4)

debug = 3

; Background execution disabled (-f)
nof ork=yes | no

; Always background, even with -v or -d (-F)
al waysfork=yes | no

; Consol e node (-c)
consol e= yes | no

; Execute with high priority (-p)
hi ghpriority = yes | no

; Initialize crypto at startup (-i)
initcrypto = yes | no

; Disable ANSI colors (-n)
nocol or = yes | no

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

205

; Dunp core on failure (-g)
dunpcore = yes | no

; Run quietly (-q)
quiet = yes | no

; Force tinmestanping in CLI verbose output (-T)
tinmestanp = yes | no

; User to run asterisk as (-U NOTE: will require changes to
; directory and device pernissions
runuser = asterisk

; Group to run asterisk as (-G
rungroup = asterisk

; Enable internal timng support (-1)
internal _timng = yes | no

; Language Options
docunentation_|l anguage = en | es | ru

; These options have no command |ine equival ent

; Cache record() files in another directory until conpletion
cache_record_files = yes | no
record_cache dir = <dir>

; Build transcode paths via SLI NEAR
transcode_via_sln = yes | no

; send SLINEAR silence while channel is being recorded
transmt_silence_during record = yes | no

; The maxi mum | oad average we accept calls for
maxl oad = 1.0

; The maxi mum nunber of concurrent calls you want to all ow
maxcal | s = 255

; Stop accepting calls when free nmenory falls bel ow this amount specified in MB
m nnenfree = 256

; All ow #exec entries in configuration files
execi ncludes = yes | no

; Don't over-informthe Asterisk sysadm he's a guru
dontwarn = yes | no

; System nane. Used to prefix CDR uniqueid and to fill \${SYSTEMNAVE}
systemmane = <a_string>

; Shoul d | anguage code be | ast conponent of sound file nane or first?
; when off, sound files are searched as <path>/<lang>/<fil e>

; when on, sound files are search as <l ang>/<pat h>/<fil e>

; (only affects relative paths for sound files)

| anguageprefix = yes | no

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 206

; Locking node for voicemail

; - lockfile: default, for normal use

; - flock: for where the |ockfile |ocking nmethod doesn't work
: eh. on SMB/ ClI FS nounts

| ockmode = lockfile | flock

; Entity ID. This is in the formof a MAC address. It should be universally
; unique. It nmust be unique between servers conmunicating with a protocol

; that uses this value. The only thing that uses this currently is DUND ,

; but other things will use it in the future.

;entityid=00: 11: 22: 33: 44: 55

[files]

; Changing the followi ng |ines may conproni se your security

; Asterisk.ctl is the pipe that is used to connect the renote CLI

; (asterisk -r) to Asterisk. Changing these settings change the

; perm ssions and ownership of this file.

; The file is created when Asterisk starts, in the "astrundir" above.
;astctl permi ssions = 0660

;astctl owner = root

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 207

;astctlgroup = asterisk
;astctl = asterisk.ctl

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 208

CLI Prompt

Changing the CLI Prompt
The CLI prompt is set with the ASTERISK_PROMPT UNIX environment variable that you set from the Unix shell before starting Asterisk
You may include the following variables, that will be replaced by the current value by Asterisk:

® %d - Date (year-month-date)

® 9s - Asterisk system name (from asterisk.conf)
® 9%h - Full hostname

® %H - Short hostname

® %t - Time

® %u - Username

® %g - Groupname
® %% - Percent sign

® Ob# - '#'if Asterisk is run in console mode, " if running as remote console
® %Cn[;n] - Change terminal foreground (and optional background) color to specified A full list of colors may be found in
include/asterisk/term.h

On systems which implement getloadavg(3), you may also use:

® %Il1 - Load average over past minute
® %I2 - Load average over past 5 minutes
® %I3 - Load average over past 15 minutes

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 209

The Asterisk Dialplan

The Asterisk dialplan

The Asterisk dialplan is divided into contexts. A context is simply a group of extensions. For each "line" that should be able to be called, an extension must
be added to a context. Then, you configure the calling "line" to have access to this context.

If you change the dialplan, you can use the Asterisk CLI command "dialplan reload" to load the new dialplan without disrupting service in your PBX.

Extensions are routed according to priority and may be based on any set of characters (a-z), digits, #, and *. Please note that when matching a pattern, "N",
"X", and "Z" are interpreted as classes of digits.

For each extension, several actions may be listed and must be given a unique priority. When each action completes, the call continues at the next priority
(except for some modules which use explicitly GOTQO's).

Extensions frequently have data they pass to the executing application (most frequently a string). You can see the available dialplan applications by
entering the "core show applications" command in the CLI.

In this version of Asterisk, dialplan functions are added. These can be used as arguments to any application. For a list of the installed functions in your
Asterisk, use the "core show functions" command.

Example dialplan

The example dial plan, in the configs/extensions.conf.sample file is installed as extensions.conf if you run "make samples" after installation of Asterisk. This
file includes many more instructions and examples than this file, so it's worthwhile to read it.

Special extensions
There are some extensions with important meanings:

® s-What to do when an extension context is entered (unless overridden by the low level channel interface) This is used in macros, and
some special cases. "s" is not a generic catch-all wildcard extension.

® i - What to do if an invalid extension is entered

® h - The hangup extension, executed at hangup

® t- What to do if nothing is entered in the requisite amount of time.

® T - This is the extension that is executed when the ‘absolute’ timeout is reached. See "core show function TIMEOUT" for more information
on setting timeouts.

® e - This extension will substitute as a catchall for any of the 'i", 't', or 'T* extensions, if any of them do not exist and catching the error in a
single routine is desired. The function EXCEPTION may be used to query the type of exception or the location where it occurred.

And finally, the extension context "default" is used when either a) an extension context is deleted while an extension is in use, or b) a specific starting
extension handler has not been defined (unless overridden by the low level channel interface).

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 210

IP Quality of Service

Introduction

Asterisk supports different QoS settings at the application level for various protocols on both signaling and media. The Type of Service (TOS) byte can be
set on outgoing IP packets for various protocols. The TOS byte is used by the network to provide some level of Quality of Service (QoS) even if the network
is congested with other traffic.

Asterisk running on Linux can also set 802.1p CoS marks in VLAN packets for the VolIP protocols it uses. This is useful when working in a switched
environment. In fact Asterisk only set priority for Linux socket. For mapping this priority and VLAN CoS mark you need to use this command:

vconfig set_egress_map [vl an-device] [skb-priority] [vlan-qos]
The table below shows all VolP channel drivers and other Asterisk modules that support QoS settings for network traffic. It also shows the type(s) of traffic
for which each module can support setting QoS settings.

Table 2.1: Channel Driver QoS Settings

Signaling Audio Video Text
chan_sip + + + +
chan_skinny + + +
chan_mgcp + +
chan_unistm + +
chan_h323 +
chan_iax2 +
chan_pjsip + + +
Table 2.2: Other ToS Settings
Signaling Audio Video Text
dundi.conf + (tos setting)
iaxprov.conf + (tos setting)

IP TOS values

The allowable values for any of the tos parameters are: CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7, AF11, AF12, AF13, AF21, AF22, AF23, AF31, AF32,
AF33, AF41, AF42, AF43 and ef (expedited forwarding),*

The tos parameters also take numeric values.*
Note that on a Linux system, Asterisk must be compiled with libcap in order to use the ef tos setting if Asterisk is not run as root.

The lowdelay, throughput, reliability, mincost, and none values have been removed in current releases.

802.1p CoS values

Because 802.1p uses 3 bits of the VLAN header, this parameter can take integer values from O to 7.

Recommended values
The recommended values shown below are also included in sample configuration files:

Table 2.3: Recommended QoS Settings

tos cos

Signaling cs3 3

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 211

Audio ef 5

Video af4l 4
Text af4l 3
Other ef

1AX2

In iax.conf, there is a "tos" parameter that sets the global default TOS for IAX packets generated by chan_iax2. Since IAX connections combine signalling,
audio, and video into one UDP stream, it is not possible to set the TOS separately for the different types of traffic.

In iaxprov.conf, there is a "tos" parameter that tells the IAXy what TOS to set on packets it generates. As with the parameter in iax.conf, IAX packets
generated by an IAXy cannot have different TOS settings based upon the type of packet. However different IAXy devices can have different TOS settings.
SIP

In sip.conf, there are four parameters that control the TOS settings: "tos_sip", "tos_audio”, "tos_video" and "tos_text". tos_sip controls what TOS SIP call
signaling packets are set to. tos_audio, tos_video and tos_text control what TOS values are used for RTP audio, video, and text packets, respectively.
There are four parameters to control 802.1p CoS: "cos_sip", "cos_audio", "cos_video" and "cos_text". The behavior of these parameters is the same as for
the SIP TOS settings described above.

Other RTP channels

chan_mgcp, chan_h323, chan_skinny and chan_unistim also support TOS and CoS via setting tos and cos parameters in their corresponding configuration
files. Naming style and behavior are the same as for chan_sip.

Reference

IEEE 802.1Q Standard: http://standards.ieee.org/getieee802/download/802.1Q-1998.pdfRelated protocols: IEEE 802.3, 802.2, 802.1D, 802.1Q

RFC 2474 - "Definition of the Differentiated Services Field (DS field) in the IPv4 and IPv6 Headers", Nichols, K., et al, December 1998.

IANA Assignments, DSCP registry Differentiated Services Field Codepoints http://www.iana.org/assignments/dscp-registry

To get the most out of setting the TOS on packets generated by Asterisk, you will need to ensure that your network handles packets with a TOS properly.
For Cisco devices, see the previously mentioned "Enterprise QoS Solution Reference Network Design Guide". For Linux systems see the "Linux Advanced
Routing & Traffic Control HOWTO" at http://www.lartc.org/.

For more information on Quality of Service for VolP networks see the "Enterprise QoS Solution Reference Network Design Guide" version 3.3 from Cisco
at: http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 212

http://standards.ieee.org/getieee802/download/802.1Q-1998.pdfRelated
http://www.iana.org/assignments/dscp-registry
http://www.lartc.org/
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf

MP3 Support

MP3 Music On Hold
Use of the mpg123 for your music on hold is no longer recommended and is now officially deprecated. You should now use one of the native formats for

your music on hold selections.

However, if you still need to use mp3 as your music on hold format, a format driver for reading MP3 audio files is available in the asterisk-addons SVN
repository on svn.digium.com or in the asterisk-addons release at http://downloads.asterisk.org/pub/telephony/asterisk/.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 213

http://downloads.asterisk.org/pub/telephony/asterisk/

ICES

The advent of icecast into Asterisk allows you to do neat things like have a caller stream right into an ice-cast stream as well as using chan_local to place
things like conferences, music on hold, etc. into the stream.

You'll need to specify a config file for the ices encoder. An example is included in contrib/asterisk-ices.xml.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 214

Database Support Configuration

Top-level page for information about Database support.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 215

Realtime Database Configuration

® [ntroduction
® Two modes: Static and Realtime
Realtime SIP friends
Realtime H.323 friends
New function in the dial plan: The Realtime Switch
Capabilities
Configuration in extconfig.conf
Limitations
FreeTDS supported with connection pooling
Notes on use of the sipregs family

Introduction

The Asterisk Realtime Architecture is a new set of drivers and functions implemented in Asterisk.

The benefits of this architecture are many, both from a code management standpoint and from an installation perspective.

The ARA is designed to be independent of storage. Currently, most drivers are based on SQL, but the architecture should be able to handle other storage
methods in the future, like LDAP.

The main benefit comes in the database support. In Asterisk v1.0 some functions supported MySQL database, some PostgreSQL and other ODBC. With
the ARA, we have a unified database interface internally in Asterisk, so if one function supports database integration, all databases that has a realtime
driver will be supported in that function.

Currently there are three realtime database drivers:

1. ODBC: Support for UnixODBC, integrated into Asterisk The UnixODBC subsystem supports many different databases, please check
www.unixodbc.org for more information.

2. MySQL: Native support for MySQL, integrated into Asterisk

3. PostgreSQL: Native support for Postgres, integrated into Asterisk

Two modes: Static and Realtime

The ARA realtime mode is used to dynamically load and update objects. This mode is used in the SIP and IAX2 channels, as well as in the voicemail
system. For SIP and IAX2 this is similar to the v1.0 MYSQL_FRIENDS functionality. With the ARA, we now support many more databases for dynamic
configuration of phones.

The ARA static mode is used to load configuration files. For the Asterisk modules that read configurations, there's no difference between a static file in the
file system, like extensions.conf, and a configuration loaded from a database.

You just have to always make sure the var_metric values are properly set and ordered as you expect in your database server if you're using the static
mode with ARA (either sequentially or with the same var_metric value for everybody).

If you have an option that depends on another one in a given configuration file (i.e, ‘musiconhold' depending on 'agent' from agents.conf) but their
var_metric are not sequential you'll probably get default values being assigned for those options instead of the desired ones. You can still use the same
var_metric for all entries in your DB, just make sure the entries are recorded in an order that does not break the option dependency.

That doesn't happen when you use a static file in the file system. Although this might be interpreted as a bug or limitation, it is not.

To use static realtime with certain core configuration files (e.g. f eat ur es. conf, cdr. conf, cel . conf, i ndi cati ons. conf, etc.) the
realtime backend you wish to use must be preloaded in nodul es. conf.

[nodul es]
prel oad => res_odbc. so
prel oad => res_config_odbc. so

Realtime SIP friends

The SIP realtime objects are users and peers that are loaded in memory when needed, then deleted. This means that Asterisk currently can't handle
voicemail notification and NAT keepalives for these peers. Other than that, most of the functionality works the same way for realtime friends as for the ones
in static configuration.

With caching, the device stays in memory for a specified time. More information about this is to be found in the sip.conf sample file.

If you specify a separate family called "sipregs" SIP registration data will be stored in that table and not in the "sippeers" table.

Realtime H.323 friends

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 216

Like SIP realtime friends, H.323 friends also can be configured using dynamic realtime objects.

New function in the dial plan: The Realtime Switch

The realtime switch is more than a port of functionality in v1.0 to the new architecture, this is a new feature of Asterisk based on the ARA. The realtime
switch lets your Asterisk server do database lookups of extensions in realtime from your dial plan. You can have many Asterisk servers sharing a
dynamically updated dial plan in real time with this solution.

Note that this switch does NOT support Caller ID matching, only extension nhame or pattern matching.

Capabilities

The realtime Architecture lets you store all of your configuration in databases and reload it whenever you want. You can force a reload over the AMI,
Asterisk Manager Interface or by calling Asterisk from a shell script with

asterisk -rx "rel oad"

You may also dynamically add SIP and IAX devices and extensions and making them available without a reload, by using the realtime objects and the
realtime switch.

Configuration in extconfig.conf
You configure the ARA in extconfig.conf (yes, it's a strange name, but is was defined in the early days of the realtime architecture and kind of stuck).
The part of Asterisk that connects to the ARA use a well defined family name to find the proper database driver. The syntax is easy:

<fam ly> => <realtime driver>, <res_<driver>. conf class nanme>[, <t abl e>]

The options following the realtime driver identified depends on the driver.
Defined well-known family names are:

® sippeers, sipusers - SIP peers and users
® sipregs - SIP registrations

® jaxpeers, iaxusers - IAX2 peers and users
® voicemail - Voicemail accounts

® extensions - Realtime extensions (switch)
®* meetme - MeetMe conference rooms

® queues - Queues

® queue_members - Queue members

® musiconhold - Music On Hold classes

® queue_log - Queue logging

Voicemail storage with the support of ODBC described in ODBC Voicemail Storage.

Limitations

Currently, realtime extensions do not support realtime hints. There is a workaround available by using func_odbc. See the sample func_odbc.conf for more
information.

FreeTDS supported with connection pooling

In order to use a FreeTDS-based database with realtime, you need to turn connection pooling on in res_odbc.conf. This is due to a limitation within the
FreeTDS protocol itself. Please note that this includes databases such as MS SQL Server and Sybase. This support is new in the current release.

You may notice a performance issue under high load using UnixODBC. The UnixODBC driver supports threading but you must specifically enable
threading within the UnixODBC configuration file like below for each engine:

Threading = 2

This will enable the driver to service many requests at a time, rather than serially.

Notes on use of the sipregs family

The community provided some additional recommendations on the JIRA issue ASTERISK-21315:

® |tis a good idea to avoid using sipregs altogether by NOT enabling it in extconfig. Using a writable sipusers table should be enough. If

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 217

https://issues.asterisk.org/jira/browse/ASTERISK-21315

you cannot write to your base sipusers table because it is readonly, you could consider making a separate sipusers view that joins the
readonly table with a writable sipregs table.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 218

FreeTDS

The cdr_tds module now works with most modern release versions of FreeTDS (from at least 0.60 through 0.82). Although versions of FreeTDS prior to
0.82 will work, we recommend using the latest available version for performance and stability reasons.

The latest release of FreeTDS is available from http://www.freetds.org/

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 219

http://www.freetds.org/*

SIP Realtime, MySQL table structure

Here is the table structure used by MySQL for Realtime SIP friends

#
Table structure for table “sipfriends’
#

CREATE TABLE | F NOT EXI STS “sipfriends™ (
“id> int(11) NOT NULL AUTO | NCREMENT,
“nane’ varchar(10) NOT NULL,
“ipaddr® varchar (15) DEFAULT NULL,
“port” int(5) DEFAULT NULL,
‘regseconds’ int(11) DEFAULT NULL,
“defaul tuser® varchar(10) DEFAULT NULL,
“fullcontact”™ varchar(35) DEFAULT NULL,
“regserver” varchar(20) DEFAULT NULL,
“useragent® varchar (20) DEFAULT NULL,
“lastns® int(11) DEFAULT NULL,
“host ™ varchar (40) DEFAULT NULL,
“type’ enun('friend','user','peer') DEFAULT NULL,
“context® varchar(40) DEFAULT NULL,
“permit® varchar (40) DEFAULT NULL,
“deny” varchar (40) DEFAULT NULL,
“secret” varchar(40) DEFAULT NULL,
“md5secret” varchar (40) DEFAULT NULL,
‘renotesecret” varchar(40) DEFAULT NULL,
“transport” enun('udp','tcp','udp,tcp','tcp,udp') DEFAULT NULL,
“dtnf node” enun('rfc2833','info','shortinfo','inband ,'auto') DEFAULT NULL,
“directnmedia’ enun('yes','no','nonat','update') DEFAULT NULL,
“nat” enun('yes','no','never','route') DEFAULT NULL,
“cal l group™ varchar (40) DEFAULT NULL,
" pi ckupgroup® varchar (40) DEFAULT NULL,
“l anguage® varchar (40) DEFAULT NULL,
“allow varchar(40) DEFAULT NULL,
“disall ow varchar(40) DEFAULT NULL,
“insecure’ varchar(40) DEFAULT NULL,
“trustrpid enun('yes','no') DEFAULT NULL,
“progressinband® enun('yes','no','never') DEFAULT NULL,
“promiscredir’ enun('yes','no') DEFAULT NULL,
“useclientcode’ enun('yes','no') DEFAULT NULL,
“account code” varchar (40) DEFAULT NULL,
“setvar® varchar(40) DEFAULT NULL,
“callerid" varchar(40) DEFAULT NULL,
“amafl ags® varchar (40) DEFAULT NULL,
“cal l counter” enun('yes','no') DEFAULT NULL,
“busyl evel © int(11) DEFAULT NULL,
“al | owoverl ap® enun('yes','no') DEFAULT NULL,
“al | owsubscribe® enun('yes','no') DEFAULT NULL,
*vi deosupport” enun('yes','no') DEFAULT NULL,
“maxcal | bitrate® int(11) DEFAULT NULL,
“rfc2833conpensate’ enun('yes','no') DEFAULT NULL,
“mai | box™ varchar (40) DEFAULT NULL,
“session-tinmers’ enun('accept','refuse','originate') DEFAULT NULL,
“session-expires’ int(11) DEFAULT NULL,
“session-minse int(11) DEFAULT NULL,
“session-refresher” enun('uac','uas') DEFAULT NULL,
"t 38pt _usertpsource’ varchar(40) DEFAULT NULL,
“regexten’ varchar(40) DEFAULT NULL,
“fromdomai n® varchar (40) DEFAULT NULL,
“fromuser” varchar (40) DEFAULT NULL,
“qualify’ varchar(40) DEFAULT NULL,
“defaultip® varchar(40) DEFAULT NULL,
‘rtptimeout® int(11) DEFAULT NULL,
“rtphol dtimeout™ int(11) DEFAULT NULL,
“sendrpid’ enun('yes','no') DEFAULT NULL,
“out boundproxy® varchar (40) DEFAULT NULL,
‘cal | backext ension® varchar (40) DEFAULT NULL,
‘registertrying’ enun('yes','no') DEFAULT NULL,
“timertl int(11) DEFAULT NULL,
“timerb’ int(11) DEFAULT NULL,
“qualifyfreq” int(11) DEFAULT NULL,
“constantssrc’ enun('yes','no') DEFAULT NULL,
“contactpernit® varchar(40) DEFAULT NULL,
“contactdeny” varchar(40) DEFAULT NULL,
‘useregphone” enun('yes','no') DEFAULT NULL,
“textsupport® enun('yes','no') DEFAULT NULL,
‘faxdetect”™ enun('yes','no') DEFAULT NULL,
“buggymi © enunt(' yes','no') DEFAULT NULL,
“auth® varchar (40) DEFAULT NULL,
“ful l name™ varchar (40) DEFAULT NULL,
“trunknane’ varchar (40) DEFAULT NULL,
“cid_nunmber® varchar(40) DEFAULT NULL,
“cal lingpres®
enun(' al | owed_not _screened', "' al | oned_passed_screen','al |l owed_failed_screen','allowed',"'prohib_not_screened',' prohib_passed_screen
‘,'prohib_failed_screen','prohib') DEFAULT NULL,
“mohinterpret” varchar(40) DEFAULT NULL,

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 220

“mohsuggest * var char (40) DEFAULT NULL,
“parkinglot® varchar(40) DEFAULT NULL,

“hasvoi cemai | © enun{'yes','no') DEFAULT NULL,
“subscribemwi © enun('yes','no') DEFAULT NULL,
“vmexten® varchar (40) DEFAULT NULL,
“autofranming” enun('yes','no') DEFAULT NULL,
“rtpkeepalive' int(11) DEFAULT NULL,
“call-limt> int(11) DEFAULT NULL,
“g726nonstandard’ enun('yes','no') DEFAULT NULL,
“ignoresdpversion® enun('yes','no') DEFAULT NULL,
“allowtransfer” enun('yes','no') DEFAULT NULL,
“dynanmic’ enun('yes','no') DEFAULT NULL,

PRI MARY KEY (“id"),

UNI QUE KEY “name’ (nane’),

KEY “ipaddr® (“ipaddr’, port’),

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 221

KEY “host® (" host’, "port’)
) ENG NE=MyI SAM

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 222

Privacy Configuration

So, you want to avoid talking to pesky telemarketers/charity seekers/poll takers/magazine renewers/etc?

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 223

FTC Don't Call List

The FTC "Don't call" database, this alone will reduce your telemarketing call volume considerably. (see: https://www.donotcall.gov/default.aspx) But, this
list won't protect from the Charities, previous business relationships, etc.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 224

https://www.donotcall.gov/default.aspx

Fighting Autodialers

Zapateller detects if callerid is present, and if not, plays the da-da-da tones that immediately precede messages like, "I'm sorry, the number you have called
is no longer in service."

Most humans, even those with unlisted/callerid-blocked numbers, will not immediately slam the handset down on the hook the moment they hear the three
tones. But autodialers seem pretty quick to do this.

I just counted 40 hangups in Zapateller over the last year in my CDR's. So, that is possibly 40 different telemarketers/charities that have hopefully slashed
my back-waters, out-of-the-way, humble home phone number from their lists.

I highly advise Zapateller for those seeking the nirvana of "privacy".

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 225

Fighting Empty Caller ID
A considerable percentage of the calls you don't want, come from sites that do not provide CallerID.

Null callerid's are a fact of life, and could be a friend with an unlisted number, or some charity looking for a handout. The PrivacyManager application can
help here. It will ask the caller to enter a 10-digit phone number. They get 3 tries(configurable), and this is configurable, with control being passed to next
priority where you can check the channelvariable PRIVACYMGRSTATUS. If the callerid was valid this variable will have the value SUCCESS, otherwise it
will have the value FAILED.

PrivacyManager can't guarantee that the number they supply is any good, tho, as there is no way to find out, short of hanging up and calling them back. But
some answers are obviously wrong. For instance, it seems a common practice for telemarketers to use your own number instead of giving you theirs. A
simple test can detect this. More advanced tests would be to look for 555 numbers, numbers that count up or down, numbers of all the same digit, etc.

PrivacyManager can be told about a context where you can have patterns that describe valid phone numbers. If none of the patterns match the input, it will
be considered a non-valid phonenumber and the user can try again until the retry counter is reached. This helps in resolving the issues stated in the
previous paragraph.

My logs show that 39 have hung up in the PrivacyManager script over the last year.

(Note: Demanding all unlisted incoming callers to enter their CID may not always be appropriate for all users. Another option might be to use call screening.
See below.)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 226

Using Welcome Menus for Privacy

Experience has shown that simply presenting incoming callers with a set of options, no matter how simple, will deter them from calling you. In the vast
majority of situations, a telemarketer will simply hang up rather than make a choice and press a key.

This will also immediately foil all autodialers that simply belch a message in your ear and hang up.

Example usage of Zapateller and PrivacyManager

[honel i ne]

exten => s, 1, Answer

exten => s, 2, Set Var, r epeat count =0

exten => s, 3, Zapatel l er, nocal lerid

exten => s, 4, PrivacyManager

;; do this if they don't enter a nunber to Privacy Manager

exten =>s,5, Gotol f($["${ PRI VACYMERSTATUS}" = "FAI LED"]?s, 105)
exten => s, 6, Gotol f($] "S{CALLERI D(nunm)}" = "7773334444" & "${CALLERI D(nane)}" : "Privacy
Manager"]?callerid-liar,s,1:s,7)

exten => s, 7, Di al (SI P/ your phone)

exten => s, 105, Background(tt-all busy)

exten => s, 106, Background(tt-sonet hi ngwr ong)

exten => s, 107, Background(tt - nmonkeysi ntr o)

exten => s, 108, Background(tt-nonkeys)

exten => s, 109, Background(tt-weasel s)

exten => s, 110, Hangup

| suggest using Zapateller at the beginning of the context, before anything else, on incoming calls.This can be followed by the PrivacyManager App.

Make sure, if you do the PrivacyManager app, that you take care of the error condition! or their non-compliance will be rewarded with access to the system.
In the above, if they can't enter a 10-digit number in 3 tries, they get the humorous "I'm sorry, but all household members are currently helping other

telemarketers...", "something is terribly wrong", "monkeys have carried them away...", various loud monkey screechings, "weasels have...", and a hangup.
There are plenty of other paths to my torture scripts, | wanted to have some fun.

In nearly all cases now, the telemarketers/charity-seekers that usually get thru to my main intro, hang up. | guess they can see it's pointless, or the average
telemarketer/charity-seeker is instructed not to enter options when encountering such systems. Don't know.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 227

Making life difficult for telemarketers
| have developed an elaborate script to torture Telemarketers, and entertain friends.

While mostly those that call in and traverse my teletorture scripts are those we know, and are doing so out of curiosity, there have been these others from
Jan 1st,2004 thru June 1st, 2004: (the numbers may or may not be correct.)

® 603890zzzz - hung up telemarket options.

® "Integrated Sale" - called a couple times. hung up in telemarket options

® "UNITED STATES GOV" - maybe a military recruiter, trying to lure one of my sons.

® 800349zzzz - hung up in charity intro

® 800349zzzz - hung up in charity choices, intro, about the only one who actually travelled to the bitter bottom of the scripts!
® 216377zzzz - hung up the magazine section

® 626757zzzz = "LIR " (pronounced "Liar"?) hung up in telemarket intro, then choices

® 757821zzzz - hung up in new magazine subscription options.

That averages out to maybe 1 a month. That puts into question whether the ratio of the amount of labor it took to make the scripts versus the benefits of
lower call volumes was worth it, but, well, | had fun, so what the heck.

But, that's about it. Not a whole lot. But | haven't had to say "NO" or "GO AWAY" to any of these folks for about a year now ...!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 228

Using Call Screening

Another option is to use call screening in the Dial command. It has two main privacy modes, one that remembers the CID of the caller, and how the callee
wants the call handled, and the other, which does not have a "memory".
Turning on these modes in the dial command results in this sequence of events, when someone calls you at an extension:

The caller calls the Asterisk system, and at some point, selects an option or enters an extension number that would dial your extension.

Before ringing your extension, the caller is asked to supply an introduction. The application asks them: "After the tone, say your name". They are allowed 4
seconds of introduction.

After that, they are told "Hang on, we will attempt to connect you to your party. Depending on your dial options, they will hear ringing indications, or get
music on hold. | suggest music on hold.

Your extension is then dialed. When (and if) you pick up, you are told that a caller presenting themselves as their recorded intro is played is calling, and you
have options, like being connected, sending them to voicemail, torture, etc.
You make your selection, and the call is handled as you chose.

There are some variations, and these will be explained in due course.

To use these options, set your Dial to something like:

exten => 3,3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t mPA(beep))

or:

exten => 3, 3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t mP(sonet hi ng) A(beep))

or:

exten => 3, 3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t mpA(beep))

The 't" allows the dialed party to transfer the call using '#'. It's optional.

The 'm'is for music on hold. | suggest it. Otherwise, the calling party gets to hear all the ringing, and lack thereof. It is generally better to use Music On
Hold. Lots of folks hang up after the 3rd or 4th ring, and you might lose the call before you can enter an option!

The 'P' option alone will database everything using the extension as a default ‘tree'. To get multiple extensions sharing the same database, use
P(some-shared-key). Also, if the same person has multiple extensions, use P(unique-id) on all their dial commands.

Use little 'p' for screening. Every incoming call will include a prompt for the callee's choice.

The A(beep), will generate a 'beep’ that the callee will hear if they choose to talk to the caller. It's kind of a prompt to let the callee know that he has to say
'hi'. It's not required, but I find it helpful.

When there is no CallerID, P and p options will always record an intro for the incoming caller. This intro will be stored temporarily in the /var/lib/asterisk/so
unds/priv-callerintros dir, under the name NOCALLERID_extension channelname and will be erased after the callee decides what to do with the call.

Of course, NOCALLERID is not stored in the database. All those with no CALLERID will be considered "Unknown".

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 229

Call Screening Options

Two other options exist, that act as modifiers to the privacy options 'P' and 'p'. They are 'N' and 'n". You can enter them as dialing options, but they only
affect things if P or p are also in the options.

'N' says, "Only screen the call if no CallerID is present”. So, if a callerID were supplied, it will come straight thru to your extension.

'n' says, "Don't save any introductions". Folks will be asked to supply an introduction (At the tone, say your name") every time they call. Their introductions
will be removed after the callee makes a choice on how to handle the call. Whether the P option or the p option is used, the incoming caller will have to
supply their intro every time they call.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 230

Screening Calls with Recorded Introductions

Philosophical Side Note

The 'P' option stores the CALLERID in the database, along with the callee's choice of actions, as a convenience to the CALLEE, whereas introductions are
stored and re-used for the convenience of the CALLER.

Introductions

Unless instructed to not save introductions (see the 'n' option above), the screening modes will save the recordings of the caller's names in the directory
Ivarllib/asterisk/sounds/priv-callerintros, if they have a CallerID. Just the 10-digit callerid numbers are used as filenames, with a ".gsm" at the end.

Having these recordings around can be very useful, however...

First of all, if a callerid is supplied, and a recorded intro for that number is already present, the caller is spared the inconvenience of having to supply their
name, which shortens their call a bit.

Next of all, these intros can be used in voicemail, played over loudspeakers, and perhaps other nifty things. For instance:

exten => s, 6, Set (PATH=/ var/|i b/ asterisk/sounds/priv-callerintros)
exten => s,7,Systen(/usr/bin/play ${PATH}/ ${ CALLERI D(nunm)}. gsm&, 0)

When a call comes in at the house, the above priority gets executed, and the callers intro is played over the phone systems speakers. This gives us a hint
who is calling.

(Note: the ,0 option at the end of the System command above, is a local mod | made to the System command. It forces a 0 result code to be returned,
whether the play command successfully completed or not. Therefore, | don't have to ensure that the file exists or not. While I've turned this mod into the
developers, it hasn't been incorporated yet. You might want to write an AGI or shell script to handle it a little more intelligently)

And one other thing. You can easily supply your callers with an option to listen to, and re-record their introductions. Here's what | did in the home system's
extensions.conf. (assume that a Goto(home-introduction,s,1) exists somewhere in your main menu as an option):

[honme-introduction]

exten => s, 1, Background(intro-options) ;; Script:

;7 To hear your Introduction, dial 1.

;; to record a new introduction, dial 2.

i to return to the main nenu, dial 3.

;; to hear what this is all about, dial 4.

exten => 1,1, Pl ayback, priv-callerintros/${CALLER D(num }
exten => 1,2, Goto(s, 1)

exten => 2,1, Goto(hone-introduction-record, s, 1)

exten => 3,1, Goto(honeline,s,7)

exten => 4,1, Playback(intro-intro) ;; Script:

;7 This may seema little strange, but it really is a neat

;; thing, both for you and for us. |'ve taped a short introduction
;; for many of the folks who normally call us. Using the Caller ID
;; fromeach incomng call, the system plays the introduction

;; for that phone nunber over a speaker, just as the call cones in.
i This hel ps the fol ks

;; here in the house nore quickly determ ne who is calling.

;; and gets the right ones to gravitate to the phone.

;; You can listen to, and record a new intro for your phone nunber
;; using this nenu.

exten => 4,2, CGoto(s, 1)

exten =>t,1,Goto(s, 1)

exten => i, 1, Background(invalid)

exten =>1i,2,Goto(s, 1)

exten => 0,1, Goto(s, 1)

[home-i ntroducti on-record]

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 231

exten => s, 1, Background(i ntro-record-choices) ;; Script:

;; |I'f you want sone advi ce about recording your

;; introduction, dial 1

;; otherwise, dial 2, and introduce yourself after

;; the beep.

exten => 1,1, Pl ayback(intro-record)

;7 Your introduction should be short and sweet and crisp.

:: Your introduction will be |[imted to 4 seconds

;7 This is NOT neant to be a voice nmail nessage, so

;; please, don't say anything about why you are calling.

;; After we are done naking the recording, your introduction
;7 will be saved for playback

;; If you are the only person that would call fromthis nunber,
;; please state your nanme. Otherw se, state your business

;; or residence nane instead. For instance, if you are

;; friend of the famly, say, Oie MPherson, and both

;; you and your kids might call here a lot, you m ght

;; say: "This is the distinguished Oie MPherson Residence!"
;; If you are the only person calling, you might say this

;7 "This is the illustrious Kermit MFrog! Pick up the Phone, soneone!!

;; If you are calling froma business, you mght pronounce a nore sedate introduction
like,

i "Fritz from MDonal ds calling.", or perhaps the nore original introduction

;; "John, fromthe Park County Mrgue. You stab 'em we slab 'em ™.
;; Just one caution: the kids will hear what you record every tine
;; you call. So watch your | anguage

;7 | will begin recording after the tone

;; When you are done, hit the # key. Gather your thoughts and get
;; ready. Renenber, the # key will end the recording, and play back
;; your intro. Good Luck, and Thank you!"

exten => 1,2, CGoto(2,1)

exten => 2,1, Background(intro-start)

;7 OK, here we go! After the beep, please give your introduction
exten => 2, 2, Background(beep)

exten => 2,3, Record(priv-callerintros/${CALLERI D(num}: gsm 4)

exten => 2,4, Background(priv-callerintros/${CALLERI D(num})

exten => 2,5, Got o(hone-introduction,s, 1)

exten =>1t,1,Goto(s, 1)

exten => i, 1, Background(invalid)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

232

exten => 1,2, CGoto(s, 1)
exten => o, 1, Goto(s, 1)

In the above, you'd most likely reword the messages to your liking, and maybe do more advanced things with the 'error' conditions (i,o,t priorities), but |
hope it conveys the idea.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 233

Asterisk Extension Language (AEL)

Top-level page for all things AEL

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 234

Introduction to AEL

AEL is a specialized language intended purely for describing Asterisk dial plans.

The current version was written by Steve Murphy, and is a rewrite of the original version.

This new version further extends AEL, and provides more flexible syntax, better error messages, and some missing functionality.
AEL is really the merger of 4 different 'languages', or syntaxes:

1. The first and most obvious is the AEL syntax itself. A BNF is provided near the end of this document.

2. The second syntax is the Expression Syntax, which is normally handled by Asterisk extension engine, as expressions enclosed in $[...].
The right hand side of assignments are wrapped in $[...] by AEL, and so are the if and while expressions, among others.

3. The third syntax is the Variable Reference Syntax, the stuff enclosed in ${..} curly braces. It's a bit more involved than just putting a
variable name in there. You can include one of dozens of 'functions’, and their arguments, and there are even some string manipulation
notation in there.

4. The last syntax that underlies AEL, and is not used directly in AEL, is the Extension Language Syntax. The extension language is what
you see in extensions.conf, and AEL compiles the higher level AEL language into extensions and priorities, and passes them via function
calls into Asterisk.

Embedded in this language is the Application/AGI commands, of which one application call per step, or priority can be made. You can
think of this as a "macro assembler" language, that AEL will compile into.

Any programmer of AEL should be familiar with its syntax, of course, as well as the Expression syntax, and the Variable syntax.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 235

AEL and Asterisk in a Nutshell

Asterisk acts as a server. Devices involved in telephony, like DAHDI cards, or Voip phones, all indicate some context that should be activated in their
behalf. See the config file formats for IAX, SIP, dahdi.conf, etc. They all help describe a device, and they all specify a context to activate when somebody

picks up a phone, or a call comes in from the phone company, or a voip phone, etc.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 236

AEL about Contexts

Contexts are a grouping of extensions.

Contexts can also include other contexts. Think of it as a sort of merge operation at runtime, whereby the included context's extensions are added to the

contexts making the inclusion.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 237

AEL about Extensions and priorities

A Context contains zero or more Extensions. There are several predefined extensions. The "s" extension is the "start" extension, and when a device
activates a context the "s" extension is the one that is going to be run. Other extensions are the timeout "t" extension, the invalid response, or "i" extension,
and there's a "fax" extension. For instance, a normal call will activate the "s" extension, but an incoming FAX call will come into the "fax" extension, if it
exists. (BTW, asterisk can tell it's a fax call by the little "beep" that the calling fax machine emits every so many seconds.).

Extensions contain several priorities, which are individual instructions to perform. Some are as simple as setting a variable to a value. Others are as
complex as initiating the Voicemail application, for instance. Priorities are executed in order.

When the 's" extension completes, asterisk waits until the timeout for a response. If the response matches an extension's pattern in the context, then
control is transferred to that extension. Usually the responses are tones emitted when a user presses a button on their phone. For instance, a context
associated with a desk phone might not have any "s" extension. It just plays a dialtone until someone starts hitting numbers on the keypad, gather the
number, find a matching extension, and begin executing it. That extension might Dial out over a connected telephone line for the user, and then connect
the two lines together.

The extensions can also contain "goto” or "jump" commands to skip to extensions in other contexts. Conditionals provide the ability to react to different
stimuli, and there you have it.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 238

AEL about Macros

Think of a macro as a combination of a context with one nameless extension, and a subroutine. It has arguments like a subroutine might. A macro call can
be made within an extension, and the individual statements there are executed until it ends. At this point, execution returns to the next statement after the

macro call. Macros can call other macros. And they work just like function calls.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 239

AEL about Applications

Application calls, like "Dial()", or "Hangup()", or "Answer()", are available for users to use to accomplish the work of the dialplan. There are over 145 of them
at the moment this was written, and the list grows as new needs and wants are uncovered. Some applications do fairly simple things, some provide

amazingly complex services.

Hopefully, the above objects will allow you do anything you need to in the Asterisk environment!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 240

Getting Started with AEL

The AEL parser (res_ael.so) is completely separate from the module that parses extensions.conf (pbx_config.so). To use AEL, the only thing that has to be
done is the module res_ael.so must be loaded by Asterisk. This will be done automatically if using 'autoload=yes' in /etc/asterisk/modules.conf. When the
module is loaded, it will look for 'extensions.ael’ in /etc/asterisk/. extensions.conf and extensions.ael can be used in conjunction with each other if that is
what is desired. Some users may want to keep extensions.conf for the features that are configured in the 'general' section of extensions.conf.

To reload extensions.ael, the following command can be issued at the CLI:

*CLlI ael reload

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 241

AEL Debugging

Right at this moment, the following commands are available, but do nothing:

® Enable AEL contexts debug

*CLI > ael debug contexts

® Enable AEL macros debug

*CLlI > ael debug nacros

® Enable AEL read debug

*CLlI > ael debug read

® Enable AEL tokens debug

*CLI > ael debug tokens

® Disable AEL debug messages

*CLI > ael no debug

@ If things are going wrong in your dialplan, you can use the following facilities to debug your file:

1. The messages log in /var/log/asterisk. (from the checks done at load time).
2. The "show dialplan” command in asterisk
3. The standalone executable, "aelparse" built in the utils/ dir in the source.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 242

About "aelparse”

You can use the "aelparse" program to check your extensions.ael file before feeding it to asterisk. Wouldn't it be nice to eliminate most errors before giving
the file to asterisk?

aelparse is compiled in the utils directory of the asterisk release. It isn't installed anywhere (yet). You can copy it to your favorite spot in your PATH.
aelparse has two optional arguments:

1. -d - Override the normal location of the config file dir, (usually /etc/asterisk), and use the current directory instead as the config file dir.
Aelparse will then expect to find the file "./extensions.ael" in the current directory, and any included files in the current directory as well.

2. -n - Don't show all the function calls to set priorities and contexts within asterisk. It will just show the errors and warnings from the parsing
and semantic checking phases.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 243

General Notes about AEL Syntax

Note that the syntax and style are now a little more free-form. The opening " (curly-braces) do not have to be on the same line as the keyword that
precedes them. Statements can be split across lines, as long as tokens are not broken by doing so. More than one statement can be included on a single
line. Whatever you think is best!

You can just as easily say,

‘ i f(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto s, 12; } ‘

as you can say:

‘ if(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto s,12; } ‘

or:

‘ if(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto s,12; } ‘

or:

‘ if (${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto s, 12; } ‘

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 244

AEL Keywords

The AEL keywords are case-sensitive. If an application name and a keyword overlap, there is probably good reason, and you should consider replacing the
application call with an AEL statement. If you do not wish to do so, you can still use the application, by using a capitalized letter somewhere in its name. In
the Asterisk extension language, application names are NOT case-sensitive.

The following are keywords in the AEL language:

® abstract
® context
® macro

® globals
® ignorepat
® switch

® if

® fTime

® else

® random
® goto

® jump

® Jocal

® return

® break

® continue
® regexten
® hint

® for

® while

® case

® pattern
® default NOTE: the "default" keyword can be used as a context name, for those who would like to do so.
® catch

® switches
® eswitches
® includes

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 245

AEL Procedural Interface and Internals

AEL first parses the extensions.ael file into a memory structure representing the file. The entire file is represented by a tree of "pval" structures linked
together.

This tree is then handed to the semantic check routine.
Then the tree is handed to the compiler.
After that, it is freed from memory.

A program could be written that could build a tree of pval structures, and a pretty printing function is provided, that would dump the data to a file, or the tree
could be handed to the compiler to merge the data into the asterisk dialplan. The modularity of the design offers several opportunities for developers to
simplify apps to generate dialplan data.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 246

AEL version 2 BNF

(hopefully, something close to bnf).

First, some basic objects

<word> a | exical token consisting of characters matching this pattern:
[-a-zA-Z0-9" [\N<AS*\+I S [\]][-a-zA-Z0-9" /. I\ \ A AS\{\FSHA[\]]*
<word3-1ist> a concatenation of up to 3 <word>s.
<col | ected-word> all characters encountered until the character that follows the <collected-word> in the granmar.

<file> :== <objects>
<obj ect s> : == <obj ect>
| <obj ect s> <obj ect>

<obj ect> : == <cont ext>

| <macro>

| <gl obal s>

|
<context> :== 'context' <word> '{' <elenents> '}"'

| 'context' <word>‘'{' '}'

| "context' ‘default’ '{' <elements> '}’

| 'context' ‘default' '{' "}’

| "abstract' 'context' <word> '{' <elenents> '}’
|

|

I

abstract' 'context' <word> '{' '}'
‘abstract' ‘context' 'default' '{' <elenents> '}’
abstract' 'context' ‘default' '{' "}’

<nmacro> :== 'macro’ <word> ' (' <arglist>"')"' '{' <macro_statements> '}’
| "macro' <word> '(' <arglist>"')" "{" "}’
| "macro' <word> ' (' ')' '{' <macro_statements> '}’
| "macro' <word> "' (' ') "{" '}’

<gl obal s> : == "globals' '{' <global _statenents> '}’
| "globals '{" '}’

<gl obal _st at ement s> : == <gl obal _st at enent >
| <gl obal _st at ement s> <gl obal _st at enent >

<gl obal _statement> : == <word> '=' <collected-word> ";"'
<arglist> :== <word>

| <arglist>"'," <word>
<el enent s> : == <el enent >

| <el enents> <el enent >

<el enent > : == <extensi on>
| <includes>
| <switches>
| <eswitches>
| <ignorepat>
|
|
|

<word> ' =" <collected-word> ';"'

‘local' <word>'='" <collected-word> ;"
<ignorepat> :== 'ignorepat' '=> <word> ';"'
<extension> :== <word> '=>" <statenent>

| 'regexten' <word> '=>' <statenent>
| "hint' ' (' <word3-list>"')"' <word> '=>' <statenent>
| 'regexten’ 'hint' '(' <word3-list>"')' <word> '=>' <statenent>

<statenments> : == <statenent>
| <statenents> <statenent>

<if_head> :=="if" ' (' <collected-word> ")"

<random head> :== 'randonmi ' (' <collected-word> ")’

<ifTime_head> :=="ifTime' ' (' <word3-list>":" <word3-list>"':" <word3-list>"'|" <word3-list>"'|" <word3-list>"]|"
: | "ifTime' '(' <word>'|' <word3-list>"'|"'" <word3-list>"'|" <word3-list>")"

<wor d3-1ist> :== <word>

| <word> <word>
| <word> <word> <word>

<swi tch_head> :== "switch' ' (' <collected-word> ")" "'{'
<statenent> :== '{' <statements> '}’
| <word> '=" <collected-word> ";"
‘local' <word>'='" <collected-word> ";"

|
| 'goto' <target> ';'
| "junp' <junptarget>

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

<wor d3-1ist>

247

| <word> ":'

|

| "while'" '(' <collected-word>")"' <statenent>
| <switch_head> "}*

| <switch_head> <case_statenents> '}’

| & nacro_call ';*

| <application_call>";"

| <application_call>"'=" <collected-word> ";"
| 'break' ;'

| ‘return" ';*

| 'continue" ';°'

| <random head> <st at enent >

| <random head> <statenent> 'else' <statenent>
| <if_head> <statenent>

| <if_head> <statenent> 'else' <statenent>

| <ifTine_head> <statenent>

| <ifTine_head> <statenent> 'else' <statement>
|

<target> :== <word>
| <word> '|' <word>
| <word>"|"' <word>"'|"' <word>
| "default' '|' <word> '|' <word>
| <word>"',' <word>
| <word>"',"' <word>"',"' <word>
| ‘default' '," <word>"',' <word>
<j unptarget> : == <word>
| <word>',"' <word>
| <word>"',"' <word>'@ <word>
<word> '@ <word>
<word> "',' <word> '@ 'default’

|
|
| <word> '@ 'default’

<macro_cal | > :== <word> ' (' <eval _arglist>")"
| <word> " (" ")’
<application_call _head> :== <word> "' ('

<application_call> : <application_cal | _head> <eval _arglist> ")’
| <application_call_head> ")"

<eval _arglist> :== <col | ect ed-word>
| <eval _arglist>"," <collected-word>
| /* nothing */
| <eval _arglist>"," /* nothing */

<case_statements> : == <case_st at ement >
| <case_statements> <case_st at enent >

<case_statenent> : case' <word> ':' <statenents>
| 'default' ':' <statenents>
| "pattern’ <word> ':' <statements>
| 'case' <word> ':'
| "default’ ":"'
| "pattern’ <word> ':'
<macro_statement s> : == <macro_st at enent >

| <mmcro_stat enent s> <macr o_st at enent >

<macro_statement > : == <statenent>
| 'catch' <word> '{' <statenents> '}’
<switches> :== "switches' '{' <switchlist> "'}"
| “switches' '{' "}'
<eswi tches> :== 'eswitches' '{' <switchlist> "}’
| "eswitches' "{' '}’

<switchlist> :== <word> ;"

| <switchlist> <word>
<i ncl udeslist> :== <includednanme> ;"

| <includedname> '|' <word3-list>':' <word3-list>"':" <word3-list>"|" <word3-1li

| <includedname> '|' <word> '|' <word3-list>"'|' <word3-list>"'|" <word3-list>";
| <includeslist> <includedname> ' ;"'
| <includeslist> <includedname> '|' <word3-1ist>
<word3-list> ;"
| <includeslist> <includedname> "'|' <word> '|' <word3-list>"'|"'" <word3-list>"]|"
<i ncl udedname> : == <wor d>
| 'default’

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

<word3-list>"':' <word3-list>"|"

‘for' '(' <collected-word> ';' <collected-word> ';"' <collected-word> ')"' <statenent>

st>"|' <word3-list>"'|" <word3-list>

<wor d3-list>

<word3-list>"|"

<word3-list>"]|"

248

<includes> :== "includes' '{' <includeslist>"}"
| “includes' "{" "}'

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 249

AEL Example Usages

Example usages of AEL

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 250

AEL Comments

Comments begin with // and end with the end of the line.

Comments are removed by the lexical scanner, and will not be recognized in places where it is busy gathering expressions to wrap in $[] , or inside
application call argument lists. The safest place to put comments is after terminating semicolons, or on otherwise empty lines.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 251

AEL Context

Contexts in AEL represent a set of extensions in the same way that they do in extensions.conf.

context default {

}

A context can be declared to be "abstract", in which case, this declaration expresses the intent of the writer, that this context will only be included by
another context, and not "stand on its own". The current effect of this keyword is to prevent "goto " statements from being checked.

abstract context |ongdist {
_INXXNXXXXXX => NoOp(generic |ong distance dialing actions in the US);

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 252

AEL Extensions

To specify an extension in a context, the following syntax is used. If more than one application is be called in an extension, they can be listed in order inside
of a block.

context default {
1234 => Pl ayback(tt-nonkeys);

8000 => {
NoQp(one) ;
NoOp(t wo) ;
NoOp(t hree);

}:

_5XXX => NoOp(it's a pattern!)

Two optional items have been added to the AEL syntax, that allow the specification of hints, and a keyword, regexten, that will force the numbering of
priorities to start at 2.

The ability to make extensions match by CID is preserved in AEL; just use /' and the CID number in the specification. See below.

context default {
regexten _5XXX => NoOp(it's a pattern!);

context default {
hint (Sip/1l) _5XXX => NoOp(it's a pattern!);

context default {
regexten hint(Sip/1) _5XXX => NoQp(it's a pattern!);

The regexten must come before the hint if they are both present.

CID matching is done as with the extensions.conf file. Follow the extension name/number with a slash and the number to match against the Caller ID:

cont ext zoonbo {
819/ 7079953345 => { NoOp(hello, 3345); }

In the above, the 819/7079953345 extension will only be matched if the CallerID is 7079953345, and the dialed number is 819. Hopefully you have another
819 extension defined for all those who wish 819, that are not so lucky as to have 7079953345 as their CallerID!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 253

AEL Includes

Contexts can be included in other contexts. All included contexts are listed within a single block.

context default {
i ncl udes {
| ocal ;
| ongdi st ance;
i nternational

Time-limited inclusions can be specified, as in extensions.conf format, with the fields described in the wiki page Asterisk cmd GotolfTime.

context default {
i ncl udes {
| ocal ;
| ongdi st ance| 16: 00- 23: 59| non-fri || ;
i nternational

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 254

AEL including other files

You can include other files with the #include "filepath" construct.

#include "/etc/asterisk/testfor.ael"

An interesting property of the #include, is that you can use it almost anywhere in the .ael file. It is possible to include the contents of a file in a macro,
context, or even extension. The #include does not have to occur at the beginning of a line. Included files can include other files, up to 50 levels deep. If the
path provided in quotes is a relative path, the parser looks in the config file directory for the file (usually /etc/asterisk).

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 255

AEL Dialplan Switches

Switches are listed in their own block within a context. For clues as to what these are used for, see Asterisk - dual servers, and Asterisk config
extensions.conf.

context default {
switches {
DUNDI / €164;
I AX2/ box5;
}s
eswi tches {
I AX2/ cont ext @{ CURSERVER} ;

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 256

AEL Ignorepat

ignorepat can be used to instruct channel drivers to not cancel dialtone upon receipt of a particular pattern. The most commonly used example is '9".

cont ext outgoing {
i gnorepat => 9;

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 257

AEL Variables

Variables in Asterisk do not have a type, so to define a variable, it just has to be specified with a value.

Global variables are set in their own block.

gl obal s {
CONSOLE=Consol e/ dsp
TRUNK=DAHDI / g2

Variables can be set within extensions as well.

context foo {
555 => {
X=5;
y=bl ah;
di vexanpl e=10/ 2
NoOp(x is ${x} and y is ${y} !);

NOTE: AEL wraps the right hand side of an assignment with $[] to allow expressions to be used If this is unwanted, you can protect the right hand side
from being wrapped by using the Set() application. Read the README.variables about the requirements and behavior of $[] expressions.

NOTE: These things are wrapped up in a $[] expression: The while() test; the if() test; the middle expression in the for(x; y; z) statement (the y
expression); Assignments - the right hand side, so a = b - Set(a=$[b])

Writing to a dialplan function is treated the same as writing to a variable.

context blah {
s => {
CALLERI D(nane) =Chi ckenMan;
NoOp(My nane is ${CALLERI D(nane)} !);

You can declare variables in Macros, as so:

Macro nyroutine(firstarg, secondarg) ({
Myvar =1
NoOp(Myvar is set to ${nyvar});

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 258

AEL Local Variables

In 1.2, and 1.4, ALL VARIABLES are CHANNEL variables, including the function arguments and associated ARG1, ARG2, etc variables. Sorry.
In trunk (1.6 and higher), we have made all arguments local variables to a macro call. They will not affect channel variables of the same name. This
includes the ARG1, ARG2, etc variables.

Users can declare their own local variables by using the keyword ‘local' before setting them to a value;

Macro nyroutine(firstarg, secondarg) {

| ocal Myvar=1;

NoOp(Myvar is set to ${Myvar}, and firstarg is ${firstarg}, and secondarg is
${secondarg});

}

In the above example, Myvar, firstarg, and secondarg are all local variables, and will not be visible to the calling code, be it an extension, or another Macro.

If you need to make a local variable within the Set() application, you can do it this way:

Macro nyroutine(firstarg, secondarg) {

Set (LOCAL(Myvar) =1);

NoOp(Myvar is set to ${Myvar}, and firstarg is ${firstarg}, and secondarg is
${secondarg});

}

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 259

AEL Conditionals

AEL supports if and switch statements, like AEL, but adds ifTime, and random. Unlike the original AEL, though, you do NOT need to put curly braces
around a single statement in the "true" branch of an if(), the random(), or an ifTime() statement. The if(), ifTime(), and random() statements allow optional
else clause.

context conditional {

_8XXX => {
Di al (SI P/ ${ EXTEN}) ;
if ("${DI ALSTATUS}" = "BUSY")
{
NoOp(yessir);
Voi cenai | (${ EXTEN}, b);
}
el se

Voi cenai | (${ EXTEN}, u) ;

i fTime (14:00-25:00, sat-sun,,)
Voi cemai | (${ EXTEN}, b) ;

el se

{
Voi cemai | (${ EXTEN}, u) ;
NoQp(hi, there!);

}
random(51) NoOp(This shoul d appear 51% of the tine);
random(60)
{
NoOp(Thi s shoul d appear 60% of the tinme);
}
el se
{
randon(75)
{
NoOp(This should appear 30% of the tine!);
}
el se
{
NoOp(This should appear 10% of the tine!);
}
}
}
777X => {
switch (${EXTEN}) {
case 7771:
NoOp(You called 7771!);
br eak;
case 7772:
NoOp(You called 7772!);
br eak;
case 7773:
NoOp(You called 7773!);
/1 fall thru-
pattern 777[4-9]:
NoOp(You called 777 sonething!);
default: NoOp(ln the default clause!);
}
}

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 260

The conditional expression in if() statements (the "${DIALSTATUS}" = "BUSY" above) is wrapped by the compiler in $[] for evaluation.

1 Neither the switch nor case values are wrapped in $[]; they can be constants, or ${var} type references only.

1 AEL generates each case as a separate extension. case clauses with no terminating 'break’, or ‘goto’, have a goto inserted, to the next clause,
which creates a 'fall thru' effect.

1 AEL introduces the ifTime keyword/statement, which works just like the if() statement, but the expression is a time value, exactly like that used
by the application GotolfTime(). See Asterisk cmd GotolfTime

The pattern statement makes sure the new extension that is created has an '_' preceding it to make sure asterisk recognizes the extension
name as a pattern.

1 Every character enclosed by the switch expression's parenthesis are included verbatim in the labels generated. So watch out for spaces!

1 NEW: Previous to version 0.13, the random statement used the "Random()" application, which has been deprecated. It now uses the RAND()
function instead, in the Gotolf application.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 261

AEL goto, jump, and labels

This is an example of how to do a goto in AEL.

cont ext got oexanpl e {

s => {
begin
NoOp(I nfinite Loop! yay!);
Wit (1);
goto begin; // go to |label in sane extension
}
3 = {
goto s,
begin; // go to label in different extension
}
4 => {
got o got oexanpl e, s, begin; // overkill go to |abel in sane context
}
}
cont ext got oexanpl e2 {
s => {
end:
got o got oexanpl e, s,begin; // go to label in different context
}

You can use the special label of "1" in the goto and jump statements. It means the "first" statement in the extension. | would not advise trying to use
numeric labels other than "1" in goto's or jumps, nor would | advise declaring a "1" label anywhere! As a matter of fact, it would be bad form to declare a
numeric label, and it might conflict with the priority numbers used internally by asterisk.

The syntax of the jump statement is: jump extension[,priority][@context] If priority is absent, it defaults to "1". If context is not present, it is assumed to be
the same as that which contains the "jump".

cont ext gotoexanpl e {

s => {
begin
NoOp(I nfinite Loop! yay!);
Wait(1);
jump s; // go to first extension in sane extension
}
3 = {
junp s, begin; // go to label in different extension
}
4 => {
jump s, begi n@ot oexanpl e; // overkill go to |abel in same context }
}
cont ext gotoexanpl e2 {
s => {
end:

jump s@otoexanple; // go to label in different context }

1 Goto labels follow the same requirements as the Goto() application, except the last value has to be a label. If the label does not exist, you will
have run-time errors. If the label exists, but in a different extension, you have to specify both the extension name and label in the goto, as in:
goto s,z; if the label is in a different context, you specify context,extension,label. There is a note about using goto's in a switch statement below...

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 262

1 AEL introduces the special label "1", which is the beginning context number for most extensions.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 263

AEL Macros

A macro is defined in its own block like this. The arguments to the macro are specified with the name of the macro. They are then referred to by that same
name. A catch block can be specified to catch special extensions.

macro std-exten(ext , dev) {
Di al (${dev}/ ${ext}, 20);
swi t ch(${ DI ALSTATUS}) {
case BUSY:
Voi cemai | (${ext}, b);
br eak;
defaul t:
Voi cemai | (${ext}, u);
}
catch a {
Voi ceMai | Mai n(${ext});
return;

A macro is then called by preceding the macro name with an ampersand. Empty arguments can be passed simply with nothing between commas.

context exanple {
_BXXX => &std-exten(S${EXTEN}, "IAX2");
_B6XXX => &std-exten(, "IAX2");
_TXXX => &std-exten(${EXTEN},);
_8XXX => &std-exten(,);

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 264

AEL Loops

AEL has implementations of for' and 'while' loops.

context | oops {
1 =>{
for (x=0; ${x} < 3; x=${x} + 1) {
Verbose(x is ${x} !);

}
}
2 =>{
y=10;
while (${y} >= 0) {
Verbose(y is ${y} !);
y=${y}-1;
}
}

NOTE: The conditional expression (the "${y} = 0" above) is wrapped in $[] so it can be evaluated. NOTE: The for loop test expression (the "$x 3" above) is
wrapped in $[] so it can be evaluated.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 265

AEL Break, Continue, and Return

Three keywords:

1. break
2. continue
3. return

are included in the syntax to provide flow of control to loops, and switches.
The break can be used in switches and loops, to jump to the end of the loop or switch.

The continue can be used in loops (while and for) to immediately jump to the end of the loop. In the case of a for loop, the increment and test will then be
performed. In the case of the while loop, the continue will jump to the test at the top of the loop.

The return keyword will cause an immediate jump to the end of the context, or macro, and can be used anywhere.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 266

AEL Examples

context denmp {
s => {
Wait(1);
Answer () ;
TI MEQUT(di gi t) =5;
TI MEQUT(r esponse) =10
restart:
Backgr ound(deno- congrats) ;
instructions:
for (x=0; ${x} < 3; x=%{x} + 1) {
Backgr ound(deno-i nstruct);

Wai t Exten();
}
}
2 => {
Backgr ound(deno- nor ei nf o) ;
goto s,instructions;
}
3 = {
LANGUAGE() =fr
goto s,restart;
}
500 => {
Pl ayback(denp- abouttotry);
Di al (1 AX2/ guest @ri sery. di gi um con);
Pl ayback(denp- nogo) ;
goto s,instructions;
}
600 => {
Pl ayback(deno- echot est) ;
Echo();
Pl ayback(denp- echodone) ;
goto s,instructions;
}
=> {
hangup:
Pl ayback(denp-t hanks) ;
Hangup() ;
}

t => goto #, hangup;
i => Playback(invalid);

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 267

AEL Semantic Checks

AEL, after parsing, but before compiling, traverses the dialplan tree, and makes several checks:

Macro calls to non-existent macros.

Macro calls to contexts.

Macro calls with argument count not matching the definition.

application call to macro. (missing the ‘&)

application calls to "Gotolf", "GotolfTime", "while", "endwhile", "Random", and "execlf", will generate a message to consider converting
the call to AEL goto, while, etc. constructs.

goto a label in an empty extension.

goto a non-existent label, either a within-extension, within-context, or in a different context, or in any included contexts. Will even check
"sister" context references.

All the checks done on the time values in the dial plan, are done on the time values in the ifTime() and includes times: o the time range
has to have two times separated by a dash; o the times have to be in range of 0 to 24 hours. o The weekdays have to match the internal
list, if they are provided; o the day of the month, if provided, must be in range of 1 to 31; o the month name or names have to match those
in the internal list.

(0.5) If an expression is wrapped in $[...], and the compiler will wrap it again, a warning is issued.

(0.5) If an expression had operators (you know, +,-,,/,issued. Maybe someone forgot to wrap a variable name?*

(0.12) check for duplicate context names.

(0.12) check for abstract contexts that are not included by any context.

(0.13) Issue a warning if a label is a numeric value.

There are a subset of checks that have been removed until the proposed AAL (Asterisk Argument Language) is developed and incorporated into Asterisk.
These checks will be:

(if the application argument analyzer is working: the presence of the 'j' option is reported as error.

if options are specified, that are not available in an application.

if you specify too many arguments to an application.

a required argument is not present in an application call.

Switch-case using "known" variables that applications set, that does not cover all the possible values. (a "default" case will solve this
problem. Each "unhandled" value is listed.

a Switch construct is used, which is uses a known variable, and the application that would set that variable is not called in the same
extension. This is a warning only...

Calls to applications not in the "applist" database (installed in /var/lib/asterisk/applist" on most systems).

In an assignment statement, if the assignment is to a function, the function name used is checked to see if it one of the currently known
functions. A warning is issued if it is not.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 268

Differences with the original version of AEL

1.

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.

20.

The $[...] expressions have been enhanced to include the ==, , and && operators. These operators are exactly equivalent to the =, , and
& operators, respectively. Why? So the C, Java, C++ hackers feel at home here.

. Itis more free-form. The newline character means very little, and is pulled out of the white-space only for line numbers in error messages.
. It generates more error messages - by this | mean that any difference between the input and the grammar are reported, by file, line

number, and column.

. It checks the contents of $[] expressions (or what will end up being $[] expressions!) for syntax errors. It also does matching

paren/bracket counts.

. It runs several semantic checks after the parsing is over, but before the compiling begins, see the list above.
. It handles #include "filepath" directives. - ALMOST anywhere, in fact. You could easily include a file in a context, in an extension, or at the

root level. Files can be included in files that are included in files, down to 50 levels of hierarchy...

. Local Goto's inside Switch statements automatically have the extension of the location of the switch statement appended to them.
. A pretty printer function is available within pbx_ael.so.
. In the utils directory, two standalone programs are supplied for debugging AEL files. One is called "aelparse", and it reads in the

letc/asterisk/extensions.ael file, and shows the results of syntax and semantic checking on stdout, and also shows the results of
compilation to stdout. The other is "aelparsel”, which uses the original ael compiler to do the same work, reading in
"letc/asterisk/extensions.ael”, using the original ‘pbx_ael.so' instead.

AEL supports the "jump" statement, and the "pattern” statement in switch constructs. Hopefully these will be documented in the AEL
README.

Added the "return" keyword, which will jump to the end of an extension/Macro.

Added the ifTime (time rangedays of weekdays of monthmonths) else construct, which executes much like an if () statement, but the
decision is based on the current time, and the time spec provided in the ifTime. See the example above. (Note: all the other
time-dependent Applications can be used via ifTime)

Added the optional time spec to the contexts in the includes construct. See examples above.

You don't have to wrap a single “true" statement in curly braces, as in the original AEL. An "else" is attached to the closest if. As usual, be
careful about nested if statements! When in doubt, use curlies!

Added the syntax regexten hint(channel) to precede an extension declaration. See examples above, under "Extension”. The regexten
keyword will cause the priorities in the extension to begin with 2 instead of 1. The hint keyword will cause its arguments to be inserted in
the extension under the hint priority. They are both optional, of course, but the order is fixed at the moment- the regexten must come
before the hint, if they are both present.

Empty case/default/pattern statements will “fall thru* as expected. (0.6)

A trailing label in an extension, will automatically have a NoOp() added, to make sure the label exists in the extension on Asterisk. (0.6)
(0.9) the semicolon is no longer required after a closing brace! (i.e. "];" === "}". You can have them there if you like, but they are not
necessary. Someday they may be rejected as a syntax error, maybe.

(0.9) the // comments are not recognized and removed in the spots where expressions are gathered, nor in application call arguments.
You may have to move a comment if you get errors in existing files.

(0.10) the random statement has been added. Syntax: random (expr) lucky-statement [else unlucky-statement]. The probability of the
lucky-statement getting executed is expr, which should evaluate to an integer between 0 and 100. If the lucky-statement isn't so lucky this
time around, then the unlucky-statement gets executed, if it is present.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 269

https://wiki/pages/createpage.action?spaceKey=AST&title=else&linkCreation=true&fromPageId=4816913
https://wiki/pages/createpage.action?spaceKey=AST&title=regexten&linkCreation=true&fromPageId=4816913
https://wiki/pages/createpage.action?spaceKey=AST&title=hint%28channel%29&linkCreation=true&fromPageId=4816913

AEL Hints and Bugs

The safest way to check for a null strings is to say $["${x}" = "] The old way would do as shell scripts often do, and append something on both sides, like
this: $[${x}foo = foo]. The trouble with the old way, is that, if x contains any spaces, then problems occur, usually syntax errors. It is better practice and
safer wrap all such tests with double quotes! Also, there are now some functions that can be used in a variable reference, ISNULL(), and LEN(), that can be
used to test for an empty string: ${ISNULL(${x})} or $[${LEN(${x})} =01].

Assignment vs. Set(). Keep in mind that setting a variable to value can be done two different ways. If you choose say 'x=y;', keep in mind that AEL will wrap
the right-hand-side with $[]. So, when compiled into extension language format, the end result will be 'Set(x=$[y])". If you don't want this effect, then say
"Set(x=y);" instead.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 270

The Full Power of AEL

A newcomer to Asterisk will look at the above constructs and descriptions, and ask, "Where's the string manipulation functions?", "Where's all the cool
operators that other languages have to offer?", etc.

The answer is that the rich capabilities of Asterisk are made available through AEL, via:

Applications: See Asterisk - documentation of application commands

Functions: Functions were implemented inside ${ .. } variable references, and supply many useful capabilities.

Expressions: An expression evaluation engine handles items wrapped inside $[...]. This includes some string manipulation facilities,
arithmetic expressions, etc.

Application Gateway Interface: Asterisk can fork external processes that communicate via pipe. AGI applications can be written in any
language. Very powerful applications can be added this way.

Variables: Channels of communication have variables associated with them, and asterisk provides some global variables. These can be
manipulated and/or consulted by the above mechanisms.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 271

Asterisk Manager Interface (AMI)

What is the Asterisk Manager Interface, or AMI? Read on...

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 272

The Asterisk Manager TCP IP API

The manager is a client/server model over TCP. With the manager interface, you'll be able to control the PBX, originate calls, check mailbox status, monitor
channels and queues as well as execute Asterisk commands.

AMI is the standard management interface into your Asterisk server. You configure AMI in manager.conf. By default, AMI is available on TCP port 5038 if
you enable it in manager.conf.

AMI receive commands, called "actions". These generate a "response" from Asterisk. Asterisk will also send "Events" containing various information
messages about changes within Asterisk. Some actions generate an initial response and data in the form list of events. This format is created to make sure
that extensive reports do not block the manager interface fully.

Management users are configured in the configuration file manager.conf and are given permissions for read and write, where write represents their ability
to perform this class of "action", and read represents their ability to receive this class of "event".

If you develop AMI applications, treat the headers in Actions, Events and Responses as local to that particular message. There is no cross-message
standardization of headers.

If you develop applications, please try to reuse existing manager headers and their interpretation. If you are unsure, discuss on the asterisk-dev mailing list.

Manager subscribes to extension status reports from all channels, to be able to generate events when an extension or device changes state. The level of
details in these events may depend on the channel and device configuration. Please check each channel configuration file for more information. (in
sip.conf, check the section on subscriptions and call limits)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 273

AMI Command Syntax
Management communication consists of tags of the form "header: value", terminated with an empty newline (\r\n) in the style of SMTP, HTTP, and other
headers.

The first tag MUST be one of the following:

® Action: An action requested by the CLIENT to the Asterisk SERVER. Only one "Action" may be outstanding at any time.
® Response: A response to an action from the Asterisk SERVER to the CLIENT.
® Event: An event reported by the Asterisk SERVER to the CLIENT

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 274

AMI Manager Commands

To see all of the available manager commands, use the "manager show commands" CLI command.

You can get more information about a manager command with the "manager show command command" CLI command in Asterisk.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 275

AMI Examples
® Login - Log a user into the manager interface.
Action: Login

User nane: testuser
Secret: testsecret

® Originate - Originate a call from a channel to an extension.

Action: Oiginate
Channel : sip/ 12345
Exten: 1234

Cont ext: default

® Originate - Originate a call from a channel to an extension without waiting for call to complete.

Action: Originate
Channel : si p/ 12345

Exten: 1234
Cont ext: default
Async: yes

® Redirect with ExtraChannel:

Attempted goal: Have a ‘robot’' program Redirect both ends of an already-connected call to a meetme room using the ExtraChannel
feature through the management interface.

Action: Redirect

Channel : DAHDI/1-1

Ext raChannel : S| P/ 3064-7e00 (vari es)
Exten: 680

Priority: 1

*Where 680 is an extension that sends you to a MeetMe room.

There are a number of GUI tools that use the manager interface, please search the mailing list archives and the documentation page on the http://www.ast
erisk.org web site for more information.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 276

http://www.asterisk.org
http://www.asterisk.org

Ensuring all modules are loaded with AMI

It is possible to connect to the manager interface before all Asterisk modules are loaded. To ensure that an application does not send AMI actions that
might require a module that has not yet loaded, the application can listen for the FullyBooted manager event. It will be sent upon connection if all modules
have been loaded, or as soon as loading is complete. The event:

Event: Ful | yBoot ed
Privilege: systemall
Status: Fully Booted

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 277

Device Status Reports with AMI

blank

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 278

Some Standard AMI Headers

® Account: — Account Code (Status)

® AccountCode: — Account Code (cdr_manager)

® ACL: <Y | N> - Does ACL exist for object ?

® Action: <action> — Request or notification of a particular action

® Address-IP: — IPaddress

® Address-Port: — IP port number

® Agent: <string> — Agent name

* AMAflags: — AMA flag (cdr_manager, sippeers)

® AnswerTime: — Time of answer (cdr_manager)

® Append: <bool> — CDR userfield Append flag

® Application: — Application to use

® Async: — Whether or not to use fast setup

® AuthType: — Authentication type (for login or challenge) "md5"

® BillableSeconds: — Billable seconds for call (cdr_manager)

® CallerID: — Caller id (name and number in Originate & cdr_manager)

® CallerID: — CallerID number Number or "<unknown>" or "unknown" (should change to "<unknown>" in app_queue)
® CallerID1: — Channel 1 CallerID (Link event)

® CallerID2: — Channel 2 CallerID (Link event)

® CalleriIDName: — CallerID name Name or "<unknown>" or "unknown" (should change to "<unknown>" in app_queue)
® Callgroup: — Call group for peer/user

® CallsTaken: <num> — Queue status variable

® Cause: <value> — Event change cause - "Expired"

® Cause: <value> — Hangupcause (channel.c)

® CID-CallingPres: — Caller ID calling presentation

® Channel: <channel> — Channel specifier

® Channel: <dialstring> — Dialstring in Originate

® Channel: <tech/[peer/username]> — Channel in Registry events (SIP, IAX2)

® Channel: <tech> — Technology (SIP/IAX2 etc) in Registry events

® ChannelType: — Tech: SIP, IAX2, DAHDI, MGCP etc

® Channell: — Link channel 1

® Channel2: — Link channel 2

® ChanObjectType: — "peer", "
® Codecs: — Codec list

® CodecOrder: — Codec order, separated with comma ","
® Command: — Cli command to run

® Context: — Context

® Count: <num> — Number of callers in queue

® Data: — Application data

® Default-addr-IP: — IP address to use before registration

® Default-Username: — Username part of URI to use before registration
® Destination: — Destination for call (Dialstring) (dial, cdr_manager)

® DestinationContext: — Destination context (cdr_manager)

® DestinationChannel: — Destination channel (cdr_manager)

® DestUniquelD: — UniquelD of destination (dial event)

® Direction: <type> — Audio to mute (read | write | both)

® Disposition: — Call disposition (CDR manager)

¢ Domain: <domain>— DNS domain

® Duration: <secs> — Duration of call (cdr_manager)

® Dynamic: <Y | N> — Device registration supported?

® Endtime: — End time stamp of call (cdr_manager)

® EventList: <flag> — Flag being "Start", "End", "Cancelled" or "ListObject"
® Events: <eventmask> — Eventmask filter ("on", "off", "system", "
® Exten: — Extension (Redirect command)

® Extension: — Extension (Status)

® Family: <string> — ASTdb key family

® File: <filename> — Filename (monitor)

® Format: <format>— Format of sound file (monitor)

® From: <time> — Parking time (ParkedCall event)

user”

call”, "log")

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 279

® Hint: — Extension hint

® Incominglimit: — SIP Peer incoming limit

® Key: Key: — ASTdb Database key

® LastApplication: — Last application executed (cdr_manager)

® LastCall: <num> — Last call in queue

® LastData: — Data for last application (cdr_manager)

® Link: — (Status)

® Listltems: <number> — Number of items in Eventlist (Optionally sent in "end" packet)
® |ocation: — Interface (whatever that is -maybe tech/name in app_queue)
® Loginchan: — Login channel for agent

® |ogintime: <number> — Login time for agent

® Mailbox: — VM Mailbox (id@vmcontext) (mailboxstatus, mailboxcount)

® MD5SecretExist: <Y | N> — Whether secret exists in MD5 format

® Membership: <string> — "Dynamic" or "static" member in queue

®* Message: <text> — Text message in ACKs, errors (explanation)

® Mix: <bool> - Boolean parameter (monitor)

® MOHSuggest: — Suggested music on hold class for peer (mohsuggest)

®* NewMessages: <count>— Count of new Mailbox messages (mailboxcount)
* Newname:

® ObjectName: — Name of object in list

® QOldName: — Something in Rename (channel.c)

® OldMessages: <count> — Count of old mailbox messages (mailboxcount)
® Qutgoinglimit: — SIP Peer outgoing limit

® Paused: <num> — Queue member paused status

® Peer: <tech/name> — "channel" specifier

® PeerStatus: <tech/name> — Peer status code "Unregistered", "Registered", "Lagged", "Reachable
® Penalty: <num> — Queue penalty

® Priority: — Extension priority

® Privilege: <privilege> — AMI authorization class (system, call, log, verbose, command, agent, user)
® Pickupgroup: — Pickup group for peer

® Position: <num> — Position in Queue

® Queue: — Queue name

® Reason: — "Autologoff"

® Reason: — "Chanunavail"

® Response: <response> — response code, like "200 OK" "Success", "Error", "Follows"
® Restart: — "True", "False"

® RegExpire: — SIP registry expire

® RegExpiry: — SIP registry expiry

® Reason: — Originate reason code

® Seconds: — Seconds (Status)

® Secret: <password> — Authentication secret (for login)

® SecretExist: <Y | N> — Whether secret exists

® Shutdown: — "Uncleanly”, "Cleanly"

® SIP-Authinsecure:

¢ SIP-FromDomain: — Peer FromDomain

® SIP-FromUser: — Peer FromUser

® SIP-NatSupport:

® SIPLastMsg:

® Source: — Source of call (dial event, cdr_manager)

® SrcUniquelD: — UniquelD of source (dial event)

® StartTime: — Start time of call (cdr_manager)

® State: — Channel state

® State: <1 | 0> — Mute flag

® Status: — Registration status (Registry events SIP)

® Status: — Extension status (Extensionstate)

® Status: — Peer status (if monitored) ** Will change name ** "unknown", "lagged", "ok"
® Status: <num> — Queue Status

® Status: — DND status (DNDState)

® Time: <sec> — Roundtrip time (latency)

® Timeout: — Parking timeout time

® Timeout: — Timeout for call setup (Originate)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 280

¢ Timeout: <seconds> — Timeout for call

® Uniqueid: — Channel Unique ID

® Uniqueidl: — Channel 1 Unique ID (Link event)

® Uniqueid2: — Channel 2 Unique ID (Link event)

® User: — Username (SIP registry)

® UserField: — CDR userfield (cdr_manager)

® Val: — Value to set/read in ASTdb

Variable: — Variable AND value to set (multiple separated with | in Originate)
Variable: <name> — For channel variables

Value: <value> — Value to set

VoiceMailbox: — VM Mailbox in SIPpeers

® Waiting: — Count of mailbox messages (mailboxstatus)

1 Please try to re-use existing headers to simplify manager message parsing in clients.*

Read Coding Guidelines if you develop new manager commands or events.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 281

https://wiki/display/AST/Coding+Guidelines

Asynchronous Javascript Asterisk Manger (AJAM)

AJAM is a new technology which allows web browsers or other HTTP enabled applications and web pages to directly access the Asterisk Manger Interface
(AMI) via HTTP. Setting up your server to process AJAM involves a few steps:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 282

Setting up the Asterisk HTTP server

Uncomment the line "enabled=yes" in /etc/asterisk/http.conf to enable Asterisk's builtin micro HTTP server.

If you want Asterisk to actually deliver simple HTML pages, CSS, javascript, etc. you should uncomment "enablestatic=yes"

. Adjust your "bindaddr" and "bindport" settings as appropriate for your desired accessibility

. Adjust your "prefix" if appropriate, which must be the beginning of any URI on the server to match. The default is "asterisk" and the rest of

these instructions assume that value.

ESNN

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 283

Allow Manager Access via HTTP

1. Make sure you have both "enabled = yes" and "webenabled = yes" setup in /etc/asterisk/manager.conf
2. You may also use "httptimeout" to set a default timeout for HTTP connections.
3. Make sure you have a manager username/secret

Once those configurations are complete you can reload or restart Asterisk and you should be able to point your web browser to specific URI's which will
allow you to access various web functions. A complete list can be found by typing "http show status" at the Asterisk CLI.
examples:

® http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar

This logs you into the manager interface's "HTML" view. Once you're logged in, Asterisk stores a cookie on your browser (valid for the length of httptimeout)
which is used to connect to the same session.

® http://localhost:8088/asterisk/rawman?action=status

Assuming you've already logged into manager, this URI will give you a "raw" manager output for the "status" command.
® http://localhost:8088/asterisk/mxml?action=status

This will give you the same status view but represented as AJAX data, theoretically compatible with RICO (http://www.openrico.org).
® http://localhost:8088/asterisk/static/ajamdemo.html

If you have enabled static content support and have done a make install, Asterisk will serve up a demo page which presents a live, but very basic, "astman"”
like interface. You can login with your username/secret for manager and have a basic view of channels as well as transfer and hangup calls. It's only tested
in Firefox, but could probably be made to run in other browsers as well.

A sample library (astman.js) is included to help ease the creation of manager HTML interfaces.

1 For the demo, there is no need for any external web server.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 284

http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar
http://localhost:8088/asterisk/rawman?action=status
http://localhost:8088/asterisk/mxml?action=status
http://www.openrico.org
http://localhost:8088/asterisk/static/ajamdemo.html

Integration with other web servers

Asterisk's micro HTTP server is not designed to replace a general purpose web server and it is intentionally created to provide only the minimal
interfaces required. Even without the addition of an external web server, one can use Asterisk's interfaces to implement screen pops and similar tools

pulling data from other web servers using iframes, div's etc. If you want to integrate CGI's, databases, PHP, etc. you will likely need to use a more
traditional web server like Apache and link in your Asterisk micro HTTP server with something like this:

ProxyPass /asterisk http://localhost:8088/asterisk

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 285

http://localhost:8088/asterisk

Asterisk Queues

Pardon, but the dialplan in this tutorial will be expressed in AEL, the new Asterisk Extension Language. If you are not used to its syntax, we hope you will
find it to some degree intuitive. If not, there are documents explaining its syntax and constructs.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 286

Configuring Call Queues

Top-level for configuring call queues

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 287

Using queues.conf

First of all, set up call queues in queue.conf
Here is an example:

queues.conf

; Cool Digium Queues
[general]
per si st ent nenbers = yes

; Ceneral sales queue
[sal es-general]

musi c=def aul t
cont ext =sal es

strat egy=ri ngal

j ol nenpty=strict

| eavewhenenpt y=stri ct

; Custoner service queue
[cust oner servi ce]

musi c=def aul t

cont ext =cust onmer servi ce
strategy=ringal

j ol nenpty=strict

| eavewhenenpt y=stri ct

; Support dispatch queue
[di spat ch]

musi c=def aul t

cont ext =di spat ch
strategy=ringal

j ol nenpty=strict

| eavewhenenpt y=stri ct

In the above, we have defined 3 separate calling queues: sales-general, customerservice, and dispatch.

Please note that the sales-general queue specifies a context of "sales”, and that customerservice specifies the context of "customerservice", and the
dispatch queue specifies the context "dispatch”. These three contexts must be defined somewhere in your dialplan. We will show them after the main menu
below.

In the [general] section, specifying the persistentmembers=yes, will cause the agent lists to be stored in astdb, and recalled on startup.
The strategy=ringall will cause all agents to be dialed together, the first to answer is then assigned the incoming call.

"joinempty" set to "strict" will keep incoming callers from being placed in queues where there are no agents to take calls. The Queue() application will
return, and the dial plan can determine what to do next.

If there are calls queued, and the last agent logs out, the remaining incoming callers will immediately be removed from the queue, and the Queue() call will
return, IF the "leavewhenempty" is set to "strict".

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 288

Routing Incoming Calls to Queues

Then in extensions.ael, you can do these things:

The Main Menu
At Digium, incoming callers are sent to the "mainmenu” context, where they are greeted, and directed to the numbers they choose...

context mai nnenu {
i ncl udes {
di gi um
gueues- | ogi nout ;

=> goto dispatch,s,1
goto sales,s,1
=> goto custonerservice,s,1
=> goto dispatch,s,1
:>{
Ri nging();
Wait(1);
Set (att enpt s=0) ;
Answer () ;
Wait(1);
Backgr ound(di gi umf ThankYouFor Cal | i ngDi gi um ;
Backgr ound(di gi unf Your OpenSour ceTel ecommuni cati onsSupplier);
Wi t Exten(0. 3);
repeat :
Set (attenpts=$[${attenmpts} + 1]);
Backgr ound(di gi unf | f YouKnowYour Part ysExt ensi onYouMayDi al | t At AnyTi ne) ;
Wi t Exten(0.1);
Backgr ound(di gi um & herw se) ;
Wai t Exten(0. 1);
Backgr ound(di gi unf For Sal esPl easePress?2);
Wi t Ext en(0. 2);
Backgr ound(di gi umf For Cust omer Ser vi cePl easePress3) ;
Wai t Exten(0. 2);
Backgr ound(di gi uni For Al | & her Depar t ment sPl easePr ess4) ;
Wi t Ext en(0. 2);
Backgr ound(di gi umi ToSpeakW t hAnQper at or Pl easePr essOAt AnyTi ne) ;
if(${attenpts} <2) {
Wai t Exten(0. 3);
Backgr ound(di gi umf ToHear TheseOpt i onsRepeat edPl easeHol d) ;

u hwWwNOY
1
\Y

}

Wai t Ext en(5);

if(${attenpts} < 2) goto repeat;

Backgr ound(di gi um YouHaveMadeNoSel ecti on);
Backgr ound(di gi um Thi sCal | W | BeEnded) ;
Backgr ound(goodbye) ;

Hangup() ;

The Contexts referenced from the queues.conf file

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 289

context sales {

0 => goto dispatch,s,1;

8 => Voi cenui | (${ SALESVM) ;

s => {
Ri nging();
Wait(2);
Backgr ound(di gi umf ThankYouFor Cont act i ngTheDi gi unSal esDepartnment) ;
Wai t Ext en(0. 3);

Backgr ound(di gi unf Pl easeHol dAndYour Cal | W1 | BeAnswer edByQur Next Avai | abl eSal esRepresentati v

e);
Wai t Ext en(0. 3);
Backgr ound(di gi um At AnyTi neYouMayPr essOToSpeakW t hAnCper at or Or 8ToLeaveAMessage) ;
Set (CALLERI D(nane) =Sal es) ;
Queue(sal es-general ,t);
Set (CALLERI D(nane) =Enpt ySal Q) ;
goto dispatch, s, 1;
Pl ayback(goodbye) ;
Hangup() ;

}
}

Please note that there is only one attempt to queue a call in the sales queue. All sales agents that are logged in will be rung.

cont ext custonerservice {
0 =>{
Set Cl DNane(CSVTr ans) ;
goto di spatch|s| 1;

}
8 => Voi cemai | (${ CUSTSERVWM) ;
s => {

Ri nging();

Vit (2);

Backgr ound(di gi umi ThankYouFor Cal | i ngDi gi unmCust oner Ser vi ce) ;
Wai t Exten(0. 3);
not r acki ng:
Backgr ound(di gi um Pl easeWi t For TheNext Avai | abl eCust omer Ser vi ceRepresent ati ve);
Wai t Exten(0. 3);
Backgr ound(di gi unf At AnyTi neYouMayPr essO0ToSpeakW t hAnQper at or Or 8ToLeaveAMessage) ;
Set (CALLERI D(nane) =Cust Svc);
Set (QUEUE_NMAX_PENALTY=10) ;
Queue(custonerservice,t);
Set (QUEUE_NVAX_PENALTY=0) ;
Queue(custonerservice,t);
Set (CALLERI D(nane) =Enpt yCSVQ) ;
goto dispatch, s, 1;
Backgr ound(di gi unmf NoCust oner Ser vi ceRepr esent ati vesAr eAvai | abl eAt Thi sTi ne) ;
Backgr ound(di gi uni Pl easeLeaveAMessagel nTheCust oner Ser vi ceVoi ceMai | Box) ;
Voi cemai | (${ CUSTSERVWM) ;
Pl ayback(goodbye) ;
Hangup() ;

Note that calls coming into customerservice will first be try to queue calls to those agents with a QUEUE_MAX_PENALTY of 10, and if none are available,
then all agents are rung.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 290

context dispatch {
s => {

Ri ngi ng();
Wit (2);
Backgr ound(di gi umf ThankYouFor Cal | i ngDi gi um ;
Wai t Exten(0. 3);
Backgr ound(di gi uni Your Cal | W1 | BeAnswer edByQur Next Avai | abl eOper at or) ;
Backgr ound(di gi um Pl easeHol d) ;
Set (QUEUE_NVAX_PENALTY=10) ;
Queue(di spatch|t);
Set (QUEUE_MAX_PENALTY=20) ;
Queue(di spatch|t);
Set (QUEUE_NVAX_PENALTY=0) ;
Queue(di spatch|t);
Backgr ound(di gi uni NoOnel sAvai | abl eToTakeYour Cal |) ;
Backgr ound(di gi um Pl easeLeaveAMessagel nQur Gener al Voi ceMai | Box) ;
Voi cemai | (${ DI SPATCHVM) ;
Pl ayback(goodbye) ;
Hangup() ;

And in the dispatch context, first agents of priority 10 are tried, then 20, and if none are available, all agents are tried.

Notice that a common pattern is followed in each of the three queue contexts:

First, you set QUEUE_MAX_PENALTY to a value, then you call Queue(queue-name,option,...) (see the Queue application documetation for details)

In the above, note that the "t" option is specified, and this allows the agent picking up the incoming call the luxury of transferring the call to other parties.

The purpose of specifying the QUEUE_MAX_PENALTY is to develop a set of priorities amongst agents. By the above usage, agents with lower number
priorities will be given the calls first, and then, if no-one picks up the call, the QUEUE_MAX_PENALTY will be incremented, and the queue tried
again. Hopefully, along the line, someone will pick up the call, and the Queue application will end with a hangup.

The final attempt to queue in most of our examples sets the QUEUE_MAX_PENALTY to zero, which means to try all available agents.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 291

Assigning Agents to Queues

In this example dialplan, we want to be able to add and remove agents to handle incoming calls, as they feel they are available. As they log in, they are
added to the queue's agent list, and as they log out, they are removed. If no agents are available, the queue command will terminate, and it is the duty of
the dialplan to do something appropriate, be it sending the incoming caller to voicemail, or trying the queue again with a higher QUEUE_MAX_PENALTY.

Because a single agent can make themselves available to more than one queue, the process of joining multiple queues can be handled automatically by
the dialplan.

Agents Log In and Out

cont ext queues-| ogi nout {
6092 => {
Answer () ;
Read(AGENT_NUMBER, agent - ent er num ;
VMAUt hent i cat e(${ AGENT_NUVBER} @lef aul t, s) ;
Set (queue- announce- success=1);
got o queues-mani p, | ${ AGENT_NUMVBER}, 1,

}
6093 => {
Answer () ;
Read(AGENT_NUMBER, agent - ent er nunj ;
Set (queue- announce- success=1);
got o queues- mani p, O{ AGENT_NUMBER}, 1;
}

In the above contexts, the agents dial 6092 to log into their queues, and they dial 6093 to log out of their queues. The agent is prompted for their agent
number, and if they are logging in, their passcode, and then they are transferred to the proper extension in the queues-manip context. The queues-manip
context does all the actual work:

cont ext queues-mani p {

/1 Raquel Squel ch

[1g6121 => {
&queue- addr enove(di spat ch, 10, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Brittanica Spears

_[1g 6165 => {
&queue- addr enove(di spat ch, 20, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Rock Hudson

_[106170 => {
&queue- addr enove(sal es- general , 10, ${ EXTEN}) ;
&queue- addr enpve(cust omer servi ce, 20, ${ EXTEN}) ;
&queue- addr enove(di spat ch, 30, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Saline Dye-on

_[10 6070 => {
&queue- addr enpbve(sal es- general , 20, ${ EXTEN}) ;
&queue- addr enove(cust oner servi ce, 30, ${ EXTEN}) ;
&queue- addr enove(di spat ch, 30, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 292

In the above extensions, note that the queue-addremove macro is used to actually add or remove the agent from the applicable queue, with the applicable
priority level. Note that agents with a priority level of 10 will be called before agents with levels of 20 or 30.

In the above example, Raquel will be dialed first in the dispatch queue, if she has logged in. If she is not, then the second call of Queue() with priority of 20
will dial Brittanica if she is present, otherwise the third call of Queue() with MAX_PENALTY of O will dial Rock and Saline simultaneously.

Also note that Rock will be among the first to be called in the sales-general queue, and among the last in the dispatch queue. As you can see in main
menu, the callerID is set in the main menu so they can tell which queue incoming calls are coming from.

The call to queue-success() gives some feedback to the agent as they log in and out, that the process has completed.

macr o queue-success(exten) {
i f(${queue-announce-success} > 0) {
switch(${exten: 0:1}) {

case |:
Pl ayback(agent -1 ogi nok) ;
Hangup() ;
br eak;

case O
Pl ayback(agent - | oggedof f);
Hangup() ;
br eak;

The queue-addremove macro is defined in this manner:

macro queue- addr enpve(queuenane, penal ty, exten) {
switch(${exten: 0:1}) {

case |: // Login
AddQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gent s, ${ penal ty});
br eak;

case O // Logout
RemoveQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gents) ;
br eak;

case P: // Pause
PauseQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gent s) ;
br eak;

case U // Unpause
UnpauseQueueMenber (${ queuenane}, Local / ${ext en: 1} @gent s) ;
br eak;

default: // Invalid
Pl ayback(invalid);
br eak;

Basically, it uses the first character of the exten variable, to determine the proper actions to take. In the above dial plan code, only the cases | or O are
used, which correspond to the Login and Logout actions.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 293

Controlling the way Queues Call Agents

Notice in the above, that the commands to manipulate agents in queues have "@agents" in their arguments. This is a reference to the agents context:

context agents {
/'l Ceneral sales queue
8010 => {
Set (QUEUE_MAX_PENALTY=10) ;
Queue(sal es-general ,t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(sal es-general ,t);
Set (CALLERI D(nane) =Enpt ySal Q) ;
goto dispatch,s, 1;
}
/1 Custoner Service queue
8011 => {
Set (QUEUE_MAX_PENALTY=10) ;
Queue(custonerservice,t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(custonerservice,t);
Set (CALLERI D(nane) =EMpt yCSVQ) ;
goto dispatch, s, 1;
}
8013 => {
Di al (i ax2/ sweat shop/ 9456@ r om ecst acy) ;
Set (CALLERI D(nane) =Enpt ySupQ) ;
Set (QUEUE_MAX_PENALTY=10) ;
Queue(support-dispatch,t);
Set (QUEUE_MAX_PENALTY=20) ;
Queue(support-dispatch,t);
Set (QUEUE_MAX_PENALTY=0); // nmeans no max
Queue(support-dispatch,t);
goto dispatch, s, 1;
}
6121 => &cal | agent (${ RAQUEL}, ${ EXTEN}) ;
6165 => &cal | agent (${ SPEARS}, ${ EXTEN}) ;
6170 => &cal | agent (${ ROCK}, ${ EXTEN}) ;
6070 => &cal | agent (${ SALI NE}, ${ EXTEN}) ;

In the above, the variables ${RAQUEL}, etc stand for actual devices to ring that person's phone (like DAHDI/37).

The 8010, 8011, and 8013 extensions are purely for transferring incoming callers to queues. For instance, a customer service agent might want to transfer
the caller to talk to sales. The agent only has to transfer to extension 8010, in this case.

Here is the callagent macro, note that if a person in the queue is called, but does not answer, then they are automatically removed from the queue.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 294

macro cal | agent (devi ce, exten) {
i f(${GROUP_COUNT(${exten}@gents)}=0) {
Set (OUTBOUND_GROUP_ONCE=${ ext en} @agent s) ;
Di al (${devi ce}, 300,1t);
swi t ch(${ DI ALSTATUS}) {
case BUSY:
Busy();
br eak;
case NOANSVER:
Set (queue- announce- success=0) ;
got o queues-nani p, O§{ ext en}, 1;

defaul t:
Hangup() ;
br eak;

}
}
el se {
Busy();
}

In the callagent macro above, the ${exten} will be 6121, or 6165, etc, which is the extension of the agent.

The use of the GROUP_COUNT, and OUTBOUND_GROUP follow this line of thinking. Incoming calls can be queued to ring all agents in the current
priority. If some of those agents are already talking, they would get bothersome call-waiting tones. To avoid this inconvenience, when an agent gets a call,
the OUTBOUND_GROUP assigns that conversation to the group specified, for instance 6171@agents. The ${GROUP_COUNT()} variable on a
subsequent call should return "1" for that group. If GROUP_COUNT returns 1, then the busy() is returned without actually trying to dial the agent.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 295

Queue Pre-Acknowledgement Messages

If you would like to have a pre acknowledge message with option to reject the message you can use the following dialplan Macro as a base with the 'M' dial
argument.

[macr o- screen]

exten=>s, 1, Wai t (. 25)

ext en=>s, 2, Read(ACCEPT, screen-cal | ee-opti ons, 1)
ext en=>s, 3, GCot oi f ($[${ ACCEPT} = 1] ?50)

ext en=>s, 4, Got oi f ($[${ ACCEPT} 2] ?30)

ext en=>s, 5, Got oi f ($[${ ACCEPT} 3] ?40)

ext en=>s, 6, Cot oi f ($[${ ACCEPT} = 4] ?30: 30)

ext en=>s, 30, Set (MACRO_RESULT=CONTI NUE)

ext en=>s, 40, Read(TEXTEN, cust om screen-exten,)
exten=>s, 41, Got oi f ($[S{LEN(${ TEXTEN})} = 3] ?42: 45)
ext en=>s, 42, Set (MACRO_RESULT=GOTC from i nt er nal "${ TEXTEN} 1)
ext en=>s, 45, Cot oi f ($[${ TEXTEN} = 0] 7?46: 4)

ext en=>s, 46, Set (MACRO_RESULT=CONTI NUE)

ext en=>s, 50, Pl ayback(after-the-tone)

ext en=>s, 51, Pl ayback(connect ed)

ext en=>s, 52, Pl ayback(beep)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 296

Queue Caveats

In the above examples, some of the possible error checking has been omitted, to reduce clutter and make the examples clearer.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 297

Queue Logs

In order to properly manage ACD queues, it is important to be able to keep track of details of call setups and teardowns in much greater detail than
traditional call detail records provide. In order to support this, extensive and detailed tracing of every queued call is stored in the queue log, located (by
default) in /var/log/asterisk/queue_log.

How do | interpret the lines in the Queue log?

The actual queue_log file will contain lines looking like the following:

1366720340| 1366720340. 303267 MYQUEUE| SI P/ 8007| RI NGNOANSWER| 1000

The pipe delimited fields from left to right are:

UNIX timestamp

Typically a Unique ID for the queue callers channel (based on the UNIX timestamp), also possible "REALTIME" or "NONE"
Queue name

Queue member channel

Event type (see below reference)

All fields to the right of the event type are event parameters

Queue log event types

These are the events (and associated information) in the queue log:

ABANDON(position|origposition|waittime) - The caller abandoned their position in the queue. The position is the caller's position in the
queue when they hungup, the origposition is the original position the caller was when they first entered the queue, and the waittime is
how long the call had been waiting in the queue at the time of disconnect.

ADDMEMBER - A member was added to the queue. The bridged channel name will be populated with the name of the channel added to
the queue.

AGENTDUMP - The agent dumped the caller while listening to the queue announcement.

AGENTLOGIN(channel) - The agent logged in. The channel is recorded.

AGENTCALLBACKLOGIN(exten@context) - The callback agent logged in. The login extension and context is recorded.
AGENTLOGOFF(channel|logintime) - The agent logged off. The channel is recorded, along with the total time the agent was logged in.

AGENTCALLBACKLOGOFF(exten@context|logintime|reason) - The callback agent logged off. The last login extension and context is
recorded, along with the total time the agent was logged in, and the reason for the logoff if it was not a normal logoff (e.g., Autologoff,
Chanunavail)

COMPLETEAGENT (holdtime|calltime]origposition) - The caller was connected to an agent, and the call was terminated normally by the
agent. The caller's hold time and the length of the call are both recorded. The caller's original position in the queue is recorded in
origposition.

COMPLETECALLER(holdtime|calltime|origposition) - The caller was connected to an agent, and the call was terminated normally by the
caller. The caller's hold time and the length of the call are both recorded. The caller's original position in the queue is recorded in
origposition.

CONFIGRELOAD - The configuration has been reloaded (e.g. with asterisk -rx reload)

CONNECT (holdtime|bridgedchanneluniqueid|ringtime) - The caller was connected to an agent. Hold time represents the amount of time
the caller was on hold. The bridged channel unique ID contains the unique ID of the queue member channel that is taking the call. This is
useful when trying to link recording filenames to a particular call in the queue. Ringtime represents the time the queue members phone
was ringing prior to being answered.

ENTERQUEUE((url|callerid) - A call has entered the queue. URL (if specified) and Caller*ID are placed in the log.

EXITEMPTY (position|origposition|waittime) - The caller was exited from the queue forcefully because the queue had no reachable
members and it's configured to do that to callers when there are no reachable members. The position is the caller's position in the queue
when they hungup, the origposition is the original position the caller was when they first entered the queue, and the waittime is how long
the call had been waiting in the queue at the time of disconnect.

EXITWITHKEY (key|position|origposition|waittime) - The caller elected to use a menu key to exit the queue. The key and the caller's

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 298

position in the queue are recorded. The caller's entry position and amoutn of time waited is also recorded.

* EXITWITHTIMEOUT (position|origposition|waittime) - The caller was on hold too long and the timeout expired. The position in the queue
when the timeout occurred, the entry position, and the amount of time waited are logged.

® QUEUESTART - The queueing system has been started for the first time this session.

* REMOVEMEMBER - A queue member was removed from the queue. The bridge channel field will contain the name of the member
removed from the queue.

®* RINGNOANSWER(ringtime) - After trying for ringtime ms to connect to the available queue member, the attempt ended without the
member picking up the call. Bad queue member!

® SYSCOMPAT - A call was answered by an agent, but the call was dropped because the channels were not compatible.

®* TRANSFER(extension|context|holdtime|calltime|origposition) - Caller was transferred to a different extension. Context and extension are
recorded. The caller's hold time and the length of the call are both recorded, as is the caller's entry position at the time of the transfer.
PLEASE remember that transfers performed by SIP UA's by way of a reinvite may not always be caught by Asterisk and trigger off this
event. The only way to be 100% sure that you will get this event when a transfer is performed by a queue member is to use the built-in
transfer functionality of Asterisk.

Queue log options

There are one or more options for queue logging in queues.conf, such as "log_membername_as_agent". See the queues.conf sample file for explanations
of those options.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 299

Asterisk Security Framework

Attacks on Voice over IP networks are becoming increasingly more common. It has become clear that we must do something within Asterisk to help
mitigate these attacks.

Through a number of discussions with groups of developers in the Asterisk community, the general consensus is that the best thing that we can do within
Asterisk is to build a framework which recognizes and reports events that could potentially have security implications. Each channel driver has a different
concept of what is an "event", and then each administrator has different thresholds of what is a "bad" event and what is a restorative event. The process of
acting upon this information is left to an external program to correlate and then take action - block traffic, modify dialing rules, etc. It was decided that
embedding actions inside of Asterisk was inappropriate, as the complexity of construction of such rule sets is difficult and there was no agreement on
where rules should be enabled or how they should be processed. The addition of a major section of code to handle rule expiration and severity
interpretation was significant. As a final determining factor, there are external programs and services which already parse log files and act in concert with
packet filters or external devices to protect or alter network security models for IP connected hosts.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 300

Security Framework Overview

This section discusses the architecture of the Asterisk modifications being proposed.
There are two main components that we propose for the initial implementation of the security framework:

® Security Event Generation
® Security Event Logger

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 301

Security Event Generation

The ast_event API is used for the generation of security events. That way, the events are in an easily interpretable format within Asterisk to make it easy to
write modules that do things with them. There are also some helper data structures and functions to aid Asterisk modules in reporting these security events
with the proper contents.

The next section of this document contains the current list of security events being proposed. Each security event type has some required pieces of
information and some other optional pieces of information.

Subscribing to security events from within Asterisk can be done by subscribing to events of type AST_EVENT_SECURITY. These events have an
information element, AST_EVENT_IE_SECURITY_EVENT, which identifies the security event sub-type (from the list described in the next section). The
result of the information elements in the events contain the required and optional meta data associated with the event sub-type.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 302

Asterisk Security Event Logger

In addition to the infrastructure for generating the events, one module that is a consumer of these events has been implemented.

Asterisk trunk was recently updated to include support for dynamic logger levels. This module takes advantage of this functionality to create a
custom "security" logger level. Then, when this module is in use, logger.conf can be configured to put security events into a file

security_log => security

The content of this file is a well defined and easily interpretable format for external scripts to read and act upon. The definition for the format of the log file is
described later in this chapter.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 303

Security Events to Log

(-) required
(+) optional

Invalid Account ID
(-) Local address fam|y/IP address/port/transport
(-) Renote address fanily/|P address/port/transport
(-) Service (SIP, AM, 1AX2, ...)
(-) System Nane
(+) Modul e
(+) Account ID (usernanme, etc)
(+) Session ID (CalllD, etc)
(+) Session timestanp (required if Session ID present)
(-) Event tinestanp (sub-second precision)
Fail ed ACL match
-> everything frominvalid account 1D
(+) Nanme of ACL (when we have naned ACLs)

I nval id Chal | enge/ Response
-> everything frominvalid account ID
(-) Challenge
(-) Response
(-) Expected Response
Invalid Password
-> everything frominvalid account ID

Successful Authentication
-> informational event
-> everything frominvalid account ID

Invalid formatting of Request
-> everything frominvalid account ID
-> account | D optional
(-) Request Type
(+) Request paraneters
Session Linmt Reached (such as a call limt)
-> everything frominvalid account ID

Menory Linmit Reached

-> everything frominvalid account ID
Maxi mum Load Aver age Reached

-> everything frominvalid account ID
Request Not Al | owed

-> everything frominvalid account ID

(-) Request Type

(+) Request paraneters
Request Not Supported

-> everything frominvalid account ID

(-) Request Type

Aut henti cati on Method Not Al | oned
-> everything frominvalid account ID
(-) Authentication Method attenpted
I'n dial og message from unexpected host
-> everything frominvalid account 1D
(-) expected host

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 304

Security Log File Format

The beginning of each line in the log file is the same as it is for other logger levels within Asterisk.

[Feb 11 07:57:03] SECURI TY[23736] res_security_log.c: <...>

The part of the log entry identified by \<...\> is where the security event content resides. The security event content is a comma separated list of key value
pairs. The key is the information element type, and the value is a quoted string that contains the associated meta data for that information element. Any
embedded quotes within the content are escaped with a backslash.

INFORMATION_ELEMENT_1="IE1 content",INFORMATION_ELEMENT_2="|E2 content"
The following table includes potential information elements and what the associated content looks like:

® |E: SecurityEvent
Content: This is the security event sub-type.
Values: FailedACL, InvalidAccountID, SessionLimit, MemoryLimit, LoadAverageLimit, RequestNotSupported, RequestNotAllowed,
AuthMethodNotAllowed, RegBadFormat, UnexpectedAddress, ChallengeResponseFailed, InvalidPassword

® |E: EventVersion
Content: This is a numeric value that indicates when updates are made to the content of the event.
Values: Monotonically increasing integer, starting at 1

® |E: Service
Content: This is the Asterisk service that generated the event.
Values: TEST, SIP, AMI

® |E: Module
Content: This is the Asterisk module that generated the event.
Values: chan_sip

® |E: AccountID
Content: This is a string used to identify the account associated with the event. In most cases, this would be a username.

® |E: SessionID
Content: This is a string used to identify the session associated with the event. The format of the session identifier is specific to the
service. In the case of SIP, this would be the Call-ID.

® |E: SessionTV
Content: The time that the session associated with the SessionID started.
Values: <seconds><microseconds> since epoch

® |E: ACLName
Content: This is a string that identifies which named ACL is associated with this event.

® |E: LocalAddress
Content: This is the local address that was contacted for the related event.
Values: <Address Family>/<Transport>/<Address>/<Port>
Examples: -> IPV4/UDP/192.168.1.1/5060 -> IPV4/TCP/192.168.1.1/5038

® |E: RemoteAddress
Content: This is the remote address associated with the event.
Examples: -> IPV4/UDP/192.168.1.2/5060 -> IPV4/TCP/192.168.1.2/5038

® |E: ExpectedAddress
Content: This is the address that was expected to be the remote address.
Examples: -> IPV4/UDP/192.168.1.2/5060 -> IPV4/TCP/192.168.1.2/5038

* |E: EventTV
Content: This is the timestamp of when the event occurred.
Values: <seconds><microseconds> since epoch

® |E: RequestType
Content: This is a service specific string that represents the invalid request

® |E: RequestParams

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 305

Content: This is a service specific string that represents relevant parameters given with a request that was considered invalid.

® |E: AuthMethod
Content: This is a service specific string that represents an authentication method that was used or requested.

® |E: Challenge
Content: This is a service specific string that represents the challenge provided to a user attempting challenge/response authentication.

® |E: Response
Content: This is a service specific string that represents the response received from a user attempting challenge/response authentication.

® |E: ExpectedResponse
Content: This is a service specific string that represents the response that was expected to be received from a user attempting
challenge/response authentication.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 306

Asterisk Sounds Packages

Asterisk utilizes a variety of sound prompts that are available in several file formats and languages. Multiple languages and formats can be installed on the
same system, and Asterisk will utilize prompts from languages installed, and will automatically pick the least CPU intensive format that is available on the
system (based on codecs in use, in additional to the codec and format modules installed and available).

In addition to the prompts available with Asterisk, you can create your own sets of prompts and utilize them as well. This document will tell you how the
prompts available for Asterisk are created so that the prompts you create can be as close and consistent in the quality and volume levels as those shipped

with Asterisk.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 307

Getting the Sounds Tools

The sounds tools are available in the publicly accessible repotools repository. You can check these tools out with Subversion via the following command:

‘ # svn co http://svn. asterisk.org/svn/repotool s

The sound tools are available in the subdirectory sound_tools/ which contains the following directories:

® audiofilter
® makeg722
® scripts

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 308

About the Sounds Tools

The following sections will describe the sound tools in more detail and explain what they are used for in the sounds package creation process.

audiofilter

The audiofilter application is used to "tune" the sound files in such a way that they sound good when being used while in a compressed format. The values
in the scripts for creating the sound files supplied in repotools is essentially a high-pass filter that drops out audio below 100Hz (or so).

(There is an ITU specification that states for 8KHz audio that is being compressed frequencies below a certain threshold should be removed because they
make the resulting compressed audio sound worse than it should.)

The audiofilter application is used by the 'converter' script located in the scripts subdirectory of repotools/sound_tools. The values being passed to the
audiofilter application is as follows:

audiofilter -n 0.86916 -1.73829 0.86916 -d 1.00000 -1.74152 0.77536

The two options -n and -d are 'numerator' and ‘denominator'. Per the author, Jean-Marc Valin, "These values are filter coefficients (-n means numerator, -d
is denominator) expressed in the z-transform domain. There represent an elliptic filter that | designed with Octave such that 'the result sounds good"."

makeg722

The makeg722 application is used by the 'converters' script to generate the G.722 sound files that are shipped with Asterisk. It starts with the RAW sound
files and then converts them to G.722.

scripts

The scripts folder is where all the magic happens. These are the scripts that the Asterisk open source team use to build the packaged audio files for the
various formats that are distributed with Asterisk.

® chkcore - used to check that the contents of core-sounds-lang.txt are in sync
® chkextra - same as above, but checks the extra sound files

® mkcore - script used to generate the core sounds packages

® mkextra - script used to generate the extra sounds packages

® mkmoh - script used to generate the music on hold packages

® converters - script used to convert the master files to various formats

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 309

Call Completion Supplementary Services (CCSS)

Introduction

A new feature for Asterisk 1.8 is Call Completion Supplementary Services. This document aims to explain the system and how to use it. In addition, this
document examines some potential troublesome points which administrators may come across during their deployment of the feature.

What is CCSS?

Call Completion Supplementary Services (often abbreviated "CCSS" or simply "CC") allow for a caller to let Asterisk automatically alert him when a called
party has become available, given that a previous call to that party failed for some reason. The two services offered are Call Completion on Busy
Subscriber (CCBS) and Call Completion on No Response (CCNR). To illustrate, let's say that Alice attempts to call Bob. Bob is currently on a phone call
with Carol, though, so Alice hears a busy signal. In this situation, assuming that Asterisk has been configured to allow for such activity, Alice would be able
to request CCBS. Once Bob has finished his phone call, Alice will be alerted. Alice can then attempt to call Bob again.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 310

CCSS Glossary

In this document, we will use some terms which may require clarification. Most of these terms are specific to Asterisk, and are by no means standard.

CCBS: Call Completion on Busy Subscriber. When a call fails because the recipient's phone is busy, the caller will have the opportunity
to request CCBS. When the recipient's phone is no longer busy, the caller will be alerted. The means by which the caller is alerted is
dependent upon the type of agent used by the caller.

CCNR: Call Completion on No Response. When a call fails because the recipient does not answer the phone, the caller will have the
opportun- ity to request CCNR. When the recipient's phone becomes busy and then is no longer busy, the caller will be alerted. The
means by which the caller is alerted is dependent upon the type of the agent used by the caller.

Agent: The agent is the entity within Asterisk that communicates with and acts on behalf of the calling party.
Monitor: The monitor is the entity within Asterisk that communicates with and monitors the status of the called party.

Generic Agent: A generic agent is an agent that uses protocol-agnostic methods to communicate with the caller. Generic agents should
only be used for phones, and never should be used for “trunks."

Generic Monitor: A generic monitor is a monitor that uses protocol- agnostic methods to monitor the status of the called party. Like with
generic agents, generic monitors should only be used for phones.

Native Agent: The opposite of a generic agent. A native agent uses protocol-specific messages to communicate with the calling party.
Native agents may be used for both phones and trunks, but it must be known ahead of time that the device with which Asterisk is
communica- ting supports the necessary signaling.

Native Monitor: The opposite of a generic monitor. A native monitor uses protocol-specific messages to subscribe to and receive naotifica-
tion of the status of the called party. Native monitors may be used for both phones and trunks, but it must be known ahead of time that
the device with which Asterisk is communicating supports the necessary signaling.

Offer: An offer of CC refers to the notification received by the caller that he may request CC.

Request: When the caller decides that he would like to subscribe to CC, he will make a request for CC. Furthermore, the term may refer
to any outstanding requests made by callers.

Recall: When the caller attempts to call the recipient after being alerted that the recipient is available, this action is referred to as a
"recall.”

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 311

The Call Completion Process

The Initial Call

The only requirement for the use of CC is to configure an agent for the caller and a monitor for at least one recipient of the call. This is controlled using the
cc_agent_policy for the caller and the cc_monitor_policy for the recipient. For more information about these configuration settings, see
configs/samples/ccss.conf.sample. If the agent for the caller is set to something other than "never" and at least one recipient has his monitor set to
something other than "never," then CC will be offered to the caller at the end of the call.

Once the initial call has been hung up, the configured cc_offer_timer for the caller will be started. If the caller wishes to request CC for the previous call, he
must do so before the timer expires.

Requesting CC
Requesting CC is done differently depending on the type of agent the caller is using.

With generic agents, the CallCompletionRequest application must be called in order to request CC. There are two different ways in which this may be
called. It may either be called before the caller hangs up during the initial call, or the caller may hang up from the initial call and dial an extension which
calls the CallCompletionRequest application. If the second method is used, then the caller will have until the cc_offer_timer expires to request CC.

With native agents, the method for requesting CC is dependent upon the technology being used, coupled with the make of equipment. It may be possible to
request CC using a programmable key on a phone or by clicking a button on a console. If you are using equipment which can natively support CC but do
not know the means by which to request it, then contact the equipment manufacturer for more information.

Cancelling CC

CC may be canceled after it has been requested. The method by which this is accomplished differs based on the type of agent the calling party uses.

When using a generic agent, the dialplan application CallRequestCancel is used to cancel CC. When using a native monitor, the method by which CC is
cancelled depends on the protocol used. Likely, this will be done using a button on a phone.

Keep in mind that if CC is cancelled, it cannot be un-cancelled.

Monitoring the Called Party

Once the caller has requested CC, then Asterisk’s job is to monitor the progress of the called parties. It is at this point that Asterisk allocates the necessary
resources to monitor the called parties.

A generic monitor uses Asterisk's device state subsystem in order to determine when the called party has become available. For both CCBS and CCNR,
Asterisk simply waits for the phone's state to change to a "not in use" state from a different state. Once this happens, then Asterisk will consider the called
party to be available and will alert the caller.

A native monitor relies on the network to send a protocol-specific message when the called party has become available. When Asterisk receives such a
message, it will consider the called party to be available and will alert the caller.

Note that since a single caller may dial multiple parties, a monitor is used for each called party. It is within reason that different called parties will use
different types of monitors for the same CC request.

Alerting the Caller

Once Asterisk has determined that the called party has become available the time comes for Asterisk to alert the caller that the called party has become
available. The method by which this is done differs based on the type of agent in use.

If a generic agent is used, then Asterisk will originate a call to the calling party. Upon answering the call, if a callback macro has been configured, then that
macro will be executed on the calling party's channel. After the macro has completed, an outbound call will be issued to the parties involved in the original
call.

If a native agent is used, then Asterisk will send an appropriate notification message to the calling party to alert it that it may now attempt its recall. How this
is presented to the caller is dependent upon the protocol and equipment that the caller is using. It is possible that the calling party's phone will ring and a
recall will be triggered upon answering the phone, or it may be that the user has a specific button that he may press to initiate a recall.

If the Caller is unavailable

When the called party has become available, it is possible that when Asterisk attempts to alert the calling party of the called party's availability, the calling
party itself will have become unavailable. If this is the case, then Asterisk will suspend monitoring of the called party and will instead monitor the availability
of the calling party. The monitoring procedure for the calling party is the same as is used in the section "Monitoring the Called Party." In other words, the
method by which the calling party is monitored is dependent upon the type of agent used by the caller.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 312

Once Asterisk has determined that the calling party has become available again, Asterisk will then move back to the process used in the section

"Monitoring the Called Party."

The CC recall

The calling party will make its recall to the same extension that was dialed. Asterisk will provide a channel variable, CC_INTERFACES, to be used as an
argument to the Dial application for CC recalls. It is strongly recommended that you use this channel variable during a CC recall. Listed are two reasons:

1. The dialplan may be written in such a way that the dialed destintations are dynamically generated. With such a dialplan, it cannot be

guaranteed that the same interfaces will be recalled.
2. For calling destinations with native CC monitors, it may be necessary to dial a special string in order to notify the channel driver that the

number being dialed is actually part of a CC recall.

1 Evenif your call gets routed through local channels, the CC_INTERFACES variable will be populated with the appropriate values for that specific

extension.

When the called parties are dialed, it is expected that a called party will answer, since Asterisk had previously determined that the party was available.
However, it is possible that the called party may choose not to respond to the call, or he could have become busy again. In such a situation, the calling
party must re-request CC if he wishes to still be alerted when the calling party has become available.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 313

Call Completion Info and Tips

® Be aware when using a generic agent that the max_cc_agents configuration parameter is ignored. The main driving reason for this is that
the mechanism for cancelling CC when using a generic agent would become much more potentially confusing to execute. By limiting a
calling party to having a single request, there is only ever a single request to be cancelled, making the process simple.

® Keep in mind that no matter what CC agent type is being used, a CC request can only be made for the latest call issued.

® |f available timers are running on multiple called parties, it is possible that one of the timers may expire before the others do. If such a
situation occurs, then the interface on which the timer expired will cease to be monitored. If, though, one of the other called parties
becomes available before his available timer expires, the called party whose available timer had previously expired will still be included in
the CC_INTERFACES channel variable on the recall.

® |tis strongly recommended that lots of thought is placed into the settings of the CC timers. Our general recommendation is that timers for
phones should be set shorter than those for trunks. The reason for this is that it makes it less likely for a link in the middle of a network to
cause CC to fail.

® CC can potentially be a memory hog if used irresponsibly. The following are recommendations to help curb the amount of resources
required by the CC engine. First, limit the maximum number of CC requests in the system using the cc_max_requests option in
ccss.conf. Second, set the cc_offer_timer low for your callers. Since it is likely that most calls will not result in a CC request, it is a good
idea to set this value to something low so that information for calls does not stick around in memory for long. The final thing that can be
done is to conditionally set the cc_agent_policy to "never" using the CALLCOMPLETION dialplan function. By doing this, no CC
information will be kept around after the call completes.

® |tis possible to request CCNR on answered calls. The reason for this is that it is impossible to know whether a call that is answered has
actually been answered by a person or by something such as voicemail or some other IVR.

® Not all channel drivers have had the ability to set CC config parameters in their configuration files added yet. At the time of this writing
(2009 Oct), only chan_sip has had this ability added, with short-term plans to add this to chan_dahdi as well. It is possible to set CC
configuration parameters for other channel types, though. For these channel types, the setting of the parameters can only be
accomplished using the CALLCOMPLETION dialplan function.

® |tis documented in many places that generic agents and monitors can only be used for phones. In most cases, however, Asterisk has no
way of distinguishing between a phone and a trunk itself. The result is that Asterisk will happily let you violate the advice given and allow
you to set up a trunk with a generic monitor or agent. While this will not cause anything catastrophic to occur, the behavior will most
definitely not be what you want.

® At the time of this writing (2009 Oct), Asterisk is the only known SIP stack to write an implementation of draft-ietf-bliss-call-completion-04.
As a result, it is recommended that for your SIP phones, use a generic agent and monitor. For SIP trunks, you will only be able to use CC
if the other end is terminated by another Asterisk server running version 1.8 or later.

® Native SIP CC will only work if the xml2 development library is installed. This is because we use libxmlI2 in order to parse PIDF bodies of
PUBLISH messages received. If, at configure time, Asterisk cannot detect that the necessary library is installed, then native CC in SIP will
be disabled. Attempts to set a channel or SIP peer to use native CC will be changed to having CC being disabled instead.

® |f the Dial application is called multiple times by a single extension, CC will only be offered to the caller for the parties called by the first
instantiation of Dial.

® |f a phone forwards a call, then CC may only be requested for the phone that executed the call forward. CC may not be requested for the
phone to which the call was forwarded.

® CC is currently only supported by the Dial application. Queue, Followme, and Page do not support CC because it is not particularly useful
for those applications.

@ ® Generic CC relies heavily on accurate device state reporting. In particular, when using SIP phones it is vital to be sure that
device state is updated properly when using them. In order to facilitate proper device state handling, be sure to set
callcounter=yes for all peers and to set limitonpeers=yes in the general section of sip.conf

® When using SIP CC (i.e. native CC over SIP), it is important that your minexpiry and maxexpiry values allow for available timers to run as
little or as long as they are configured. When an Asterisk server requests call completion over SIP, it sends a SUBSCRIBE message with
an Expires header set to the number of seconds that the available timer should run. If the Asterisk server that receives this SUBSCRIBE
has a maxexpiry set lower than what is in the received Expires header, then the available timer will only run for maxexpiry seconds.

® CC support for ETSI PTP and Q.SIG requires CallerID information to match CC requests with CC offers. For Q.SIG, depending upon the
options negotiated when CC is requested, the CallerID information needs to be callable as well.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 314

® As with all Asterisk components, CC is not perfect. If you should find a bug or wish to enhance the feature, please open an issue on https
:/lissues.asterisk.org. If writing an enhancement, please be sure to include a patch for the enhancement, or else the issue will be closed.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 315

https://issues.asterisk.org
https://issues.asterisk.org

Generic Call Completion Example

The following is an incredibly bare-bones example sip.conf and dialplan to show basic usage of generic call completion. It is likely that if you have a more
complex setup, you will need to make use of items like the CALLCOMPLETION dialplan function or the CC_INTERFACES channel variable.
First, let's establish a very simple sip.conf to use for this

sip.conf

[Mar k]
cont ext =phone_cal | s
cc_agent _pol i cy=generic

cc_nonitor_policy=generic ;W wll accept defaults for the rest of the cc paraneters
;W& also are not concerned with other SIP details for this

; exanpl e

[Ri chard]

cont ext =phone_cal | s
cc_agent _pol i cy=generic
cc_noni tor_policy=generic

Now, let's write a simple dialplan

extensions.conf

[phone_cal I s]

exten => 1000, 1, Di al (SI P/ Mark, 20)
exten => 1000, n, Hangup

exten => 2000, 1, Di al (SI P/ Ri chard, 20)
exten => 2000, n, Hangup

exten => 30, 1, Cal | Conpl eti onRequest
exten => 30, n, Hangup

exten => 31, 1, Cal | Conpl eti onCancel
exten => 31, n, Hangup

Scenario 1: Mark picks up his phone and dials Richard by dialing 2000. Richard is currently on a call, so Mark hears a busy signal. Mark then hangs up,
picks up the phone and dials 30 to call the CallCompletionRequest application. After some time, Richard finishes his call and hangs up. Mark is
automatically called back by Asterisk. When Mark picks up his phone, Asterisk will dial extension 2000 for him.

Scenario 2: Richard picks up his phone and dials Mark by dialing 1000. Mark has stepped away from his desk, and so he is unable to answer the phone
within the 20 second dial timeout. Richard hangs up, picks the phone back up and then dials 30 to request call completion. Mark gets back to his desk and
dials somebody's number. When Mark finishes the call, Asterisk detects that Mark's phone has had some activity and has become available again and
rings Richard's phone. Once Richard picks up, Asterisk automatically dials exteision 1000 for him.

Scenario 3: Much like scenario 1, Mark calls Richard and Richard is busy. Mark hangs up, picks the phone back up and then dials 30 to request call
completion. After a little while, Mark realizes he doesn't actually need to talk to Richard, so he dials 31 to cancel call completion. When Richard becomes
free, Mark will not automatically be redialed by Asterisk.

Scenario 4: Richard calls Mark, but Mark is busy. About thirty seconds later, Richard decides that he should perhaps request call completion. However,
since Richard's phone has the default cc_offer_timer of 20 seconds, he has run out of time to request call completion. He instead must attempt to dial Mark
again manually. If Mark is still busy, Richard can attempt to request call completion on this second call instead.

Scenario 5: Mark calls Richard, and Richard is busy. Mark requests call completion. Richard does not finish his current call for another 2 hours (7200
seconds). Since Mark has the default ccbs_available_timer of 4800 seconds set, Mark will not be automatically recalled by Asterisk when Richard finishes
his call.

Scenario 6: Mark calls Richard, and Richard does not respond within the 20 second dial timeout. Mark requests call completion. Richard does not use his
phone again for another 4 hours (144000 seconds). Since Mark has the default ccnr_available_timer of 7200 seconds set, Mark will not be automatically
recalled by Asterisk when Richard finishes his call.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 316

Call Detail Records (CDR)

Top-level page for all things CDR

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 317

CDR Applications

® SetAccount - Set account code for billing

® SetAMAFIlags - Sets AMA flags

®* NOCDR - Make sure no CDR is saved for a specific call

® ResetCDR - Reset CDR

® ForkCDR - Save current CDR and start a new CDR for this call
® Authenticate - Authenticates and sets the account code

® SetCDRUserField - Set CDR user field

* AppendCDRUserField - Append data to CDR User field

For more information, use the "core show application application" command. You can set default account codes and AMA flags for devices in channel
configuration files, like sip.conf, iax.conf etc.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 318

CDR Fields

® accountcode: What account number to use, (string, 20 characters)

® src: Caller*ID number (string, 80 characters)

® dst: Destination extension (string, 80 characters)

® dcontext: Destination context (string, 80 characters)

® clid: Caller*ID with text (80 characters)

® channel: Channel used (80 characters)

® dstchannel: Destination channel if appropriate (80 characters)

® lastapp: Last application if appropriate (80 characters)

® |astdata: Last application data (arguments) (80 characters)

® start: Start of call (date/time)

® answer: Answer of call (date/time)

® end: End of call (date/time)

® duration: Total time in system, in seconds (integer), from dial to hangup

® billsec: Total time call is up, in seconds (integer), from answer to hangup

® disposition: What happened to the call: ANSWERED, NO ANSWER, BUSY
* amaflags: What flags to use: DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
® user field: A user-defined field, maximum 255 characters

In some cases, uniqueid is appended:
® uniqueid: Unigue Channel Identifier (32 characters) This needs to be enabled in the source code at compile time
1 Ifyou use IAX2 channels for your calls, and allow 'full’ transfers (not media-only transfers), then when the calls is transferred the server in the
middle will no longer be involved in the signaling path, and thus will not generate accurate CDRs for that call. If you can, use media-only

transfers with IAX2 to avoid this problem, or turn off transfers completely (although this can result in a media latency increase since the media
packets have to traverse the middle server(s) in the call).

In 1.8 and later
In some CDR backends, the following fields may also be supported:

¢ linkedid: a unique identifier based on uniqueid. Unlike uniqueid, but spreads to other channels as transfers, dials, etc are performed
® peeraccount: the account code of the bridged channel
® sequence: a field that can be combined with uniqueid and linkedid to uniquely identify a CDR

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 319

CDR Variables

If the channel has a CDR, that CDR has its own set of variables which can be accessed just like channel variables. The following builtin variables are
available.

${CDR(clid)} Caller ID

${CDR(src)} Source

${CDR(dst)} Destination

${CDR(dcontext)} Destination context

${CDR(channel)} Channel name

${CDR(dstchannel)} Destination channel

${CDR(lastapp)} Last app executed

${CDR(lastdata)} Last app's arguments

${CDR(start)} Time the call started.

${CDR(answer)} Time the call was answered.
${CDR(end)} Time the call ended.

${CDR(duration)} Duration of the call.

${CDR(billsec)} Duration of the call once it was answered.
${CDR(disposition)} ANSWERED, NO ANSWER, BUSY
${CDR(amaflags)} DOCUMENTATION, BILL, IGNORE etc
${CDR(accountcode)} The channel's account code.
${CDR(uniqueid)} The channel's unique id.
${CDR(userfield)} The channels uses specified field.

In addition, you can set your own extra variables by using Set(CDR(name)=value). These variables can be output into a text-format CDR by using the

cdr_custom CDR driver; see the cdr_custom.conf.sample file in the configs directory for an example of how to do this.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

320

CDR Storage Backends

Top-level page for information about storage backends for Asterisk's CDR engine.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 321

MSSQL CDR Backend

Asterisk can currently store CDRs into a Microsoft SQL Server database in two different ways: cdr_odbc or cdr_tds

Call Data Records can be stored using unixODBC (which requires the FreeTDS package) cdr_odbc or directly by using just the FreeTDS package cdr_tds.
The following provide some examples known to get asterisk working with mssq|.

1 Only choose one db connector.

ODBC using cdr_odbc

Compile, configure, and install the latest unixODBC package:

tar -zxvf uni xODBC-2.2.9.tar.gz &% cd uni xODBC-2.2.9 && ./configure --sysconfdir=/etc --prefix=/usr --disable-gui &% nake && neke
install

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz & cd freetds-0.62.4 & ./configure --prefix=/usr --wth-tdsver=7.0 \ --wi th-unixodbc=/usr/lib &&
neke && neke install

Compile, or recompile, asterisk so that it will now add support for cdr_odbc.

neke clean && ./configure --wth-odbc & make update && nake && neke install

Setup odbc configuration files.
These are working examples from my system. You will need to modify for your setup. You are not required to store usernames or passwords here.

letc/odbcinst.ini

[FreeTDS]

Description = FreeTDS CDBC driver for MSSQL
Driver = /usr/lib/libtdsodbc. so

Setup = /usr/lib/libtdsS. so

FileUsage = 1

[etc/odbc.ini

[MBSQL- ast eri sk]

description = Asterisk ODBC for MSSQL
driver = FreeTDS

server = 192.168.1.25

port = 1433

dat abase = voi pdb

tds_version = 7.0

| anguage = us_english

Only install one database connector. Do not confuse asterisk by using both ODBC (cdr_odbc) and FreeTDS (cdr_tds). This command will erase
the contents of cdr_tds.conf

| [-f /etc/asterisk/cdr_tds.conf] > /etc/asterisk/cdr_tds.conf

1 unixODBC requires the freeTDS package, but asterisk does not call freeTDS directly.

Now set up cdr_odbc configuration files.
These are working samples from my system. You will need to modify for your setup. Define your usernames and passwords here, secure file as well.

letc/asterisk/cdr_odbc.conf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 322

https://wiki/pages/createpage.action?spaceKey=AST&title=cdr_odbc&linkCreation=true&fromPageId=5242916
https://wiki/pages/createpage.action?spaceKey=AST&title=cdr_tds&linkCreation=true&fromPageId=5242916

[gl obal]
dsn=MSSQL- ast eri sk
user name=voi pdbuser
passwor d=voi pdbpass
| oguni quei d=yes

And finally, create the 'cdr' table in your mssql database.

CREATE TABLE cdr (
[calldate] [datetinme] NOT NULL
[clid] [varchar] (80) NOT NULL
[src] [varchar] (80) NOT NULL
[dst] [varchar] (80) NOT NULL
[dcontext] [varchar] (80) NOT NULL
[channel] [varchar] (80) NOT NULL
[dstchannel] [varchar] (80) NOT NULL ,
[l astapp] [varchar] (80) NOT NULL
[l astdata] [varchar] (80) NOT NULL ,
[duration] [int] NOT NULL
[billsec] [int] NOT NULL
[disposition] [varchar] (45) NOT NULL ,
[amaflags] [int] NOT NULL
[account code] [varchar] (20) NOT NULL
[uni queid] [varchar] (150) NOT NULL
[userfield] [varchar] (255) NOT NULL

Start asterisk in verbose mode.

You should see that asterisk logs a connection to the database and will now record every call to the database when it's complete.
TDS, using cdr_tds

Compile, configure, and install the latest FreeTDS package:

‘ tar -zxvf freetds-0.62.4.tar.gz & cd freetds-0.62.4 & ./configure --prefix=/usr --with-tdsver=7.0 make && nake instal

Compile, or recompile, asterisk so that it will now add support for cdr_tds.

‘ neke clean && ./configure --with-tds & neke update &% nmake &% make instal

the contents of cdr_odbc.conf

Only install one database connector. Do not confuse asterisk by using both ODBC (cdr_odbc) and FreeTDS (cdr_tds). This command will erase

| [-f /etc/asterisk/cdr_odbc.conf] > /etc/asterisk/cdr_odbc. conf

Setup cdr_tds configuration files.

These are working samples from my system. You will need to modify for your setup. Define your usernames and passwords here, secure file as well.

letclasterisk/cdr_tds.conf [global] hostnane=192.168. 1.25 port=1433 dbnane=voi pdb user =voi pdbuser password=voi pdpass charset =Bl G5

And finally, create the 'cdr' table in your mssql database.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

323

CREATE TABLE cdr (
[account code] [varchar] (20) NULL ,
[src] [varchar] (80) NULL ,
[dst] [varchar] (80) NULL ,
[dcontext] [varchar] (80) NULL ,
[clid] [varchar] (80) NULL ,
[channel] [varchar] (80) NULL ,
[dstchannel] [varchar] (80) NULL ,
[l astapp] [varchar] (80) NULL ,
[l astdata] [varchar] (80) NULL ,
[start] [datetime] NULL ,
[answer] [datetine] NULL ,
[end] [datetine] NULL ,
[duration] [int] NULL ,
[billsec] [int] NULL ,
[di sposition] [varchar] (20) NULL ,
[amafl ags] [varchar] (16) NULL ,
[uni queid] [varchar] (150) NULL ,
[userfield] [varchar] (256) NULL

Start asterisk in verbose mode.

You should see that asterisk logs a connection to the database and will now record every call to the database when it's complete.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

324

MySQL CDR Backend

ODBC

Using MySQL for CDR records is supported by using ODBC and the cdr_adaptive_odbc module (depends on res_odbc).

(D The below cdr_mysql module has been deprecated in 1.8.

Native

Alternatively, there is a native MySQL CDR module.

To use it, configure the module in cdr_mysgl.conf. Create a table called cdr under the database name you will be using the following schema.

CREATE TABLE cdr (
cal | date datetine NOT NULL default '0000-00-00 00:00: 00",
clid varchar(80) NOT NULL default "',
src varchar(80) NOT NULL default "',
dst varchar(80) NOT NULL default "',
dcontext varchar(80) NOT NULL default "',
channel varchar(80) NOT NULL default '',
dst channel varchar(80) NOT NULL default "',
| astapp varchar (80) NOT NULL default '*,
| astdata varchar (80) NOT NULL default "',
duration int(11) NOT NULL default 'O0',
billsec int(11) NOT NULL default '0',
di sposi tion varchar(45) NOT NULL default "',
amafl ags int(11) NOT NULL default '0',
account code varchar (20) NOT NULL default "',
uni quei d varchar(32) NOT NULL default "',
userfield varchar(255) NOT NULL default '

In 1.8 and later

The following columns can also be defined:

peeraccount varchar(20) NOT NULL defaul t
l'inkedi d varchar(32) NOT NULL default "'
sequence int(11) NOT NULL default 'O

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

325

PostgreSQL CDR Backend

If you want to go directly to postgresql database, and have the cdr_pgsql.so compiled you can use the following sample setup. On Debian, before compiling
asterisk, just install libpgxx-dev. Other distros will likely have a similiar package.
Once you have the compile done, copy the sample cdr_pgsql.conf file or create your own.

Here is a sample:

letc/asterisk/cdr_pgsql.conf

; Sanple Asterisk config file for CDR | oggi ng to PostgresSQ
[gl obal]

host nanme=l ocal host

port=5432

dbnanme=ast eri sk

passwor d=passwor d

user =post gr es

tabl e=cdr

Now create a table in postgresql for your cdrs

CREATE TABLE cdr (
cal ldate timestanp NOT NULL ,
clid varchar (80) NOT NULL ,
src varchar (80) NOT NULL ,
dst varchar (80) NOT NULL ,
dcontext varchar (80) NOT NULL ,
channel varchar (80) NOT NULL ,
dstchannel varchar (80) NOT NULL ,
| astapp varchar (80) NOT NULL ,
| astdata varchar (80) NOT NULL ,
duration int NOT NULL ,
billsec int NOT NULL ,
di sposition varchar (45) NOT NULL ,
amaflags int NOT NULL ,
account code varchar (20) NOT NULL ,
uni quei d varchar (150) NOT NULL ,
userfield varchar (255) NOT NULL

In 1.8 and later

The following columns can also be defined:

peeraccount varchar (20) NOT NULL
i nkedi d varchar (150) NOT NULL
sequence int NOT NULL

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 326

SQLite 2 CDR Backend

SQLite version 2 is supported in cdr_sqlite.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 327

SQLite 3 CDR Backend

SQLite version 3 is supported in cdr_sglite3_custom.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 328

RADIUS CDR Backend

What is needed

®* FreeRADIUS server
® Radiusclient-ng library
® Asterisk PBX

Installation of the Radiusclient library

Download the sources

From http://developer.berlios.de/projects/radiusclient-ng/

Untar the source tarball:

root @ocal host:/usr/local /src# tar xvfz radiusclient-ng-0.5.2.tar.gz

Compile and install the library:

root @ocal host:/usr/local /src# cd radiusclient-ng-0.5.2

root @ocal host:/usr/local/src/radiusclient-ng-0.5.2#. /configure
root @ocal host:/usr/|ocal /src/radiusclient-ng-0.5.2# nake

root @ocal host:/usr/local/src/radiusclient-ng-0.5.2# nake install

Configuration of the Radiusclient library
By default all the configuration files of the radiusclient library will be in /usr/local/etc/radiusclient-ng directory.

File "radiusclient.conf' Open the file and find lines containing the following:

‘ aut hserver | ocal host ‘

This is the hostname or IP address of the RADIUS server used for authentication. You will have to change this unless the server is running on the same
host as your Asterisk PBX.

‘ acctserver |ocal host ‘

This is the hostname or IP address of the RADIUS server used for accounting. You will have to change this unless the server is running on the same host
as your Asterisk PBX.

File "servers"
RADIUS protocol uses simple access control mechanism based on shared secrets that allows RADIUS servers to limit access from RADIUS clients.
A RADIUS server is configured with a secret string and only RADIUS clients that have the same secret will be accepted.

You need to configure a shared secret for each server you have configured in radiusclient.conf file in the previous step. The shared secrets are stored in
lusr/localletc/radiusclient-ng/servers file.

Each line contains hostname of a RADIUS server and shared secret used in communication with that server. The two values are separated by white
spaces. Configure shared secrets for every RADIUS server you are going to use.

File "dictionary"

Asterisk uses some attributes that are not included in the dictionary of radiusclient library, therefore it is necessary to add them. A file called
dictionary.digium (kept in the contrib dir) was created to list all new attributes used by Asterisk. Add to the end of the main dictionary

file /usr/localletc/radiusclient-ng/dictionary the line:

$I NCLUDE / pat h/to/ di ctionary. di gi um

Install FreeRADIUS Server (Version 1.1.1)

Download sources tarball from:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 329

http://developer.berlios.de/projects/radiusclient-ng/

http://freeradius.org/

Untar, configure, build, and install the server:

root @ocal host:/usr/local /src# tar xvfz freeradius-1.1.1.tar.gz
root @ocal host:/usr/local/src# cd freeradius-1.1.1

root @ocal host"/usr/local /src/freeradius-1.1.1# ./configure
root @ocal host"/usr/local /src/freeradius-1.1. 1# make

root @ocal host"/usr/local/src/freeradius-1.1.1# nmake install

All the configuration files of FreeRADIUS server will be in /usr/local/etc/raddb directory.

Configuration of the FreeRADIUS Server

There are several files that have to be modified to configure the RADIUS server. These are presented next.

File "clients.conf"

File /usr/local/etc/raddb/clients.conf contains description of RADIUS clients that are allowed to use the server. For each of the clients you need to specify its
hostname or IP address and also a shared secret. The shared secret must be the same string you configured in radiusclient library.

Example:

client nyhost { secret = nysecret shortnane = foo }

This fragment allows access from RADIUS clients on "myhost" if they use "mysecret" as the shared secret. The file already contains an entry for localhost
(127.0.0.1), so if you are running the RADIUS server on the same host as your Asterisk server, then modify the existing entry instead, replacing the default
password.

File "dictionary"

1 Asof version 1.1.2, the dictionary.digium file ships with FreeRADIUS.

The following procedure brings the dictionary.digium file to previous versions of FreeRADIUS.

File /usr/local/etc/raddb/dictionary contains the dictionary of FreeRADIUS server. You have to add the same dictionary file (dictionary.digium), which you
added to the dictionary of radiusclient-ng library. You can include it into the main file, adding the following line at the end of file
lusr/localletc/raddb/dictionary:

$I NCLUDE / pat h/ t o/ di cti onary. di gi um

That will include the same new attribute definitions that are used in radiusclient-ng library so the client and server will understand each other.
Asterisk Accounting Configuration

Compilation and installation:
The module will be compiled as long as the radiusclient-ng library has been detected on your system.

By default FreeRADIUS server will log all accounting requests into /ust/local/var/log/radius/radacct directory in form of plain text files. The server will create
one file for each hostname in the directory. The following example shows how the log files look like.

Asterisk now generates Call Detail Records. See /include/asterisk/cdr.h for all the fields which are recorded. By default, records in comma separated values
will be created in /var/log/asterisk/cdr-csv.

The configuration file for cdr_radius.so module is /etc/asterisk/cdr.conf

This is where you can set CDR related parameters as well as the path to the radiusclient-ng library configuration file.

Logged Values

® "Asterisk-Acc-Code", The account name of detail records
® "Asterisk-Src",

® "Asterisk-Dst",

® "Asterisk-Dst-Ctx", The destination context

® "Asterisk-Clid",

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 330

http://freeradius.org/

® "Asterisk-Chan", The channel

® "Asterisk-Dst-Chan", (if applicable)

® "Asterisk-Last-App", Last application run on the channel

® "Asterisk-Last-Data", Argument to the last channel

® "Asterisk-Start-Time",

® "Asterisk-Answer-Time",

® "Asterisk-End-Time",

® "Asterisk-Duration", Duration is the whole length that the entire call lasted. ie. call rx'd to hangup "end time" minus "start time"
® "Asterisk-Bill-Sec", The duration that a call was up after other end answered which will be <= to duration "end time" minus "answer time"
® "Asterisk-Disposition", ANSWERED, NO ANSWER, BUSY

® "Asterisk-AMA-Flags", DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.

® "Asterisk-Unique-ID", Unique call identifier

® "Asterisk-User-Field" User field set via SetCDRUserField

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 331

Calling using Google

® Prerequisites
® RTP configuration
® Motif configuration
® Example Motif Configuration
®* XMPP Configuration
® Example XMPP Configuration
® More about Priorities
® Phone configuration
® Dialplan configuration
® Incoming calls
® OQutgoing calls

This new page replaces the old page. The old page documents behavior that is not functional or supported going forward. This new page
documents behavior as of Asterisk 11. For more information, please see the blog posting http://blogs.digium.com/2012/07/24/asterisk-11-develo
pment-the-motive-for-motif/

Prerequisites

Asterisk communicates with Google Voice and Google Talk using the chan_motif Channel Driver and the res_xmpp Resource module. Before proceeding,
please ensure that both are compiled and part of your installation. Compilation of res_xmpp and chan_motif for use with Google Talk / Voice are dependant
on the iksemel library files as well as the OpenSSL development libraries presence on your system.

Calling using Google Voice or via the Google Talk web client requires the use of Asterisk 11.0 or greater. Older versions of Asterisk will not work.
For basic calling between Google Talk web clients, you need a Google Mail account.
For calling to and from the PSTN, you will need a Google Voice account.

In your Google account, you'll want to change the Chat setting from the default of "Automatically allow people that | communicate with often to chat with me
and see when I'm online" to the second option of "Only allow people that I've explicitly approved to chat with me and see when I'm online."

IPV6 is currently not supported. Use of IPv4 is required.

Google Voice can now be used with Google Apps accounts.

RTP configuration

ICE support is required for chan_motif to operate. It is disabled by default and must be explicitly enabled in the RTP configuration file rtp.conf as follows.

[general]
i cesupport =yes

If this option is not enabled you will receive the following error message.

Unabl e to add Googl e | CE candi dates as | CE support not available or no candidates avail abl e

Motif configuration

The Motif channel driver is configured with the motif.conf configuration file, typically located in /etc/asterisk. What follows is an example configuration for
successful operation.

Example Motif Configuration

[googl €]

cont ext =i nconi ng- noti f
di sal | ow=al |

al | ow=ul aw

connect i on=googl e

This general section of this configuration specifies several items.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 332

http://blogs.digium.com/2012/07/24/asterisk-11-development-the-motive-for-motif/
http://blogs.digium.com/2012/07/24/asterisk-11-development-the-motive-for-motif/

. That calls will terminate to or originate from the incoming-motif context; context=incoming-motif
. That all codecs are first explicitly disallowed

. That G.711 ulaw is allowed

. The an XMPP connection called "google" is to be used

A WDN PR

Google lists supported audio codecs on this page - https://developers.google.com/talk/open_communications
Per section, 5, the supported codecs are:

PCMA
PCMU
G.722
GSM
iLBC
. Speex

o0k wDN R

Our experience shows this not to be the case. Rather, the codecs, supported by Asterisk, and seen in an invite from Google Chat are:

PCMA
PCMU
G.722

iLBC

. Speex 16kHz
. Speex 8kHz

oo s wN P

It should be noted that calling using Google Voice requires the G.711 ulaw codec. So, if you want to make sure Google Voice calls work, allow G.711 ulaw,
at a minimum.

XMPP Configuration

The res_xmpp Resource is configured with the xmpp.conf configuration file, typically located in /etc/asterisk. What follows is an example configuration for
successful operation.

Example XMPP Configuration

[general]

[googl e]

type=client

server host =t al k. googl e. com
user nane=exanpl e@nei | . com
secr et =exanpl epasswor d
priority=25

port =5222

uset | s=yes

usesasl| =yes

stat us=avai | abl e
statusmessage="1 am avai |l abl e"
timeout =5

The default general section does not need any modification.
The google section of this configuration specifies several items.

. The type is set to client, as we're connecting to Google as a service; type=client

. The serverhost is Google's talk server; serverhost=talk.google.com

. Our username is configured as your_google_username@gmail.com; username=your_google_username@gmail.com

Our password is configured using the secret option; secret=your_google_password

. Google's talk service operates on port 5222; port=5222

. Our priority is set to 25; priority=25

. TLS encryption is required by Google; usetls=yes

. Simple Authentication and Security Layer (SASL) is used by Google; usesasl=yes

. We set a status message so other Google chat users can see that we're an Asterisk server; statusmessage="l am available"
. We set a timeout for receiving message from Google that allows for plenty of time in the event of network delay; timeout=5

=
o

More about Priorities

As many different connections to Google are possible simultaneously via different client mechanisms, it is important to understand the role of priorities in
the routing of inbound calls. Proper usage of the priority setting can allow use of a Google account that is not otherwise entirely dedicated to voice services.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 333

https://developers.google.com/talk/open_communications

With priorities, the higher the setting value, the more any client using that value is preferred as a destination for inbound calls, in deference to any other
client with a lower priority value. Known values of commonly used clients include the Gmail chat client, which maintains a priority of 20, and the Windows
GTalk client, which uses a priority of 24. The maximum allowable value is 127. Thus, setting one's priority option for the XMPP peer in res_xmpp.conf to a
value higher than 24 will cause inbound calls to flow to Asterisk, even while one is logged into either Gmail or the Windows GTalk client.

Outbound calls are unaffected by the priority setting.

Phone configuration

Now, let's create a phone. The configuration of a SIP device for this purpose would, in sip.conf, typically located in /etc/asterisk, look something like:

[mal col nj

type=peer

secret =ny_secur e_password
host =dynami ¢

cont ext =l ocal

Dialplan configuration

Incoming calls

Next, let's configure our dialplan to receive an incoming call from Google and route it to the SIP phone we created. To do this, our dialplan, extensions.conf,
typically located in /etc/asterisk, would look like:

[incom ng-notif]

exten => s, 1, NoOp()

same => n, Wai t(1)

same => n, Answer ()

sane => n, SendDTMF(1)

sane => n, Di al (SI P/ nal col m 20)

1 Did you know that the Google Chat client does this same thing; it waits, and then sends a DTMF 1. Really.

This example uses the "s" unmatched extension, because we're only configuring one client connection in this example.

In this example, we're Waiting 1 second, answering the call, sending the DTMF "1" back to Google, and then dialing the call.
We do this, because inbound calls from Google enable, even if it's disabled in your Google Voice control panel, call screening.
Without this SendDTMF event, you'll have to confirm with Google whether or not you want to answer the call.

@ Using Google's voicemail
Another method for accomplishing the sending of the DTMF event is to use Dial option "D." The D option tells Asterisk to send a specified DTMF
string after the called party has answered. DTMF events specified before a colon are sent to the called party. DTMF events specified after a
colon are sent to the calling party.

In this example then, one does not need to actually answer the call first, though one should still wait at least a second for things, like STUN
setup, to finish. This means that if the called party doesn't answer, Google will resort to sending the call to one's Google Voice voicemail box,
instead of leaving it at Asterisk.

exten => s,1,Dial (SIP/ mal col m20,D(:1))

@ Filtering Caller ID
The inbound CallerID from Google is going to look a bit nasty, e.qg.:

’ +15555551212@oi ce. googl e. cont srvres- MTAuM E4Lj | uMrk3Q k4Me M=

Your VolP client (SIPDroid) might not like this, so let's simplify that Caller ID a bit, and make it more presentable for your phone's display. Here's
the example that we'll step through:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 334

exten => s, 1, NoOp()
same => n, Set (crazygoogl eci d=${ CALLERI D(nane) })
same => n, Set (stripcrazysuffix=${CUT(crazygooglecid, @1)})
same => n, Set (CALLERI D(al |) =${stripcrazysuffix})
same => n, Dial (SI P/ nmal col m 20, D(: 1))

First, we set a variable called crazygooglecid to be equal to the name field of the CALLERID function. Next, we use the CUT function to grab
everything that's before the @ symbol, and save it in a new variable called stripcrazysuffix. We'll set this new variable to the CALLERID that
we're going to use for our Dial. Finally, we'll actually Dial our internal destination.

Outgoing calls

Outgoing calls to Google Talk users take the form of:

exten => 100, 1, Di al (Moti f/ googl e/ nybuddy@nmai | .com,r)

Where the technology is "Motif," the dialing peer is "google" as defined in xmpp.conf, and the dial string is the Google account name.
We use the Dial option "r" because Google doesn't provide ringing indications.

Outgoing calls made to Google Voice take the form of:

exten => _1IXXXXXXXXXX, 1, Di al (Moti f/ googl e/ ${ EXTEN} @ oi ce. googl e. com , r)

Where the technology is "Motif," the dialing peer is "google" as defined in motif.conf, and the dial string is a full E.164 number, sans the plus character.

Again, we use Dial option "r" because Google doesn't provide ringing indications.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 335

Channel Event Logging (CEL)

Top-level page for all things CEL

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 336

CEL Design Goals

CEL, or Channel Event Logging, has been written with the hopes that it will help solve some of the problems that were difficult to address in CDR records.
Some difficulties in CDR generation are the fact that the CDR record stores three events: the "Start" time, the "Answer" time, and the "End" time. Billing
time is usually the difference between "Answer" and "End", and total call duration was the difference in time from "Start" to "End". The trouble with this
direct and simple approach is the fact that calls can be transferred, put on hold, conferenced, forwarded, etc. In general, those doing billing applications in
Asterisk find they have to do all sorts of very creative things to overcome the shortcomings of CDR records, often supplementing the CDR records with AGI
scripts and manager event filters.

The fundamental assumption is that the Channel is the fundamental communication object in asterisk, which basically provides a communication channel
between two communication ports. It makes sense to have an event system aimed at recording important events on channels. Each event is attached to a
channel, like ANSWER or HANGUP. Some events are meant to connect two or more channels, like the BRIDGE_START event. Some events, like
BLINDTRANSFER, are initiated by one channel, but affect two others. These events use the Peer field, like BRIDGE would, to point to the target channel.

The design philosophy of CEL is to generate event data that can grouped together to form a billing record. This may not be a simple task, but we hope to
provide a few different examples that could be used as a basis for those involved in this effort.

There are definite parallels between Manager events and CEL events, but there are some differences. Some events that are generated by CEL are not
generated by the Manager interface (yet). CEL is optimized for databases, and Manager events are not. The focus of CEL is billing. The Manager interface
is targeted to real-time monitoring and control of asterisk.

To give the reader a feel for the complexities involved in billing, please take note of the following sequence of events:
Remember that 150, 151, and 152 are all Zap extension numbers, and their respective devices are Zap/50, Zap/51, and Zap/52.

152 dials 151; 151 answers. 152 parks 151; 152 hangs up. 150 picks up the park (dials 701). 150 and 151 converse. 151 flashes hook; dials 152, talks to
152, then 151 flashes hook again for 3-way conference. 151 converses with the other two for a while, then hangs up. 150 and 152 keep conversing, then
hang up. 150 hangs up first.(not that it matters).

This sequence of actions will generate the following annotated list of 42 CEL events:

Note that the actual CEL events below are in CSV format and do not include the ;;; and text after that which gives a description of what the event
represents.

" EV_CHAN_START", " 2007- 05- 09

12: 46: 16", "fxs. 52", " 152", "" "" "" "s" "extension","Zap/52-1","", "", " DOCUMENTATI ON',"",6 " 1178736376.3","","" ;;; 152 takes the
phone of f - hook

" EV_APP_START", “2007- 05- 09

12: 46: 18", "fxs. 52", " 152", "152","", """ "151", "extensi on", "Zap/ 52-1","Di al ", " Zap/ 51| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736376. 3" ;;;
152 finishes dialing 151

" EV_CHAN_START", " 2007- 05- 09

12: 46: 18", "fxs. 51", " 151", "" """ "" "s" “"extension","Zap/51-1","", "", " DOCUMENTATI ON',6"",6 " 1178736378.4","","" ;;; 151 channel
created, starts ringing

(151 is ringing)

"EV_ANSVWER', "2007- 05-09 12:46:19","","151","152","", """ "151", "extensi on", "Zap/ 51-1", " AppDi al ", " (Qut goi ng

Li ne) ", " DOCUMENTATI ON', "*,"1178736378.4","","" ;;; 151 answers

"EV_ANSVER', " 2007- 05- 09

12: 46: 19", "fxs. 52", " 152", "152","" "" "151", "extension","Zap/52-1","Di al ", " Zap/ 51| 30| Tt Wv', " DOCUMENTATI ON', "", " 1178736376. 3","",""
;3 so does 152 (??7?)

" EV_BRI DGE_START", " 2007- 05- 09

12: 46: 20", "fxs. 52", " 152", "152","","" "151", "extensi on", " Zap/ 52-1","Di al ", " Zap/ 51| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736376. 3","","Z

ap/51-1" ;;; 152 and 151 are bridged

(151 and 152 are conversing)

" EV_BRI DGE_END", " 2007- 05- 09

12: 46: 25", "fxs. 52", " 152", "152","","" "151", "extensi on", " Zap/ 52-1","Di al ", " Zap/ 51| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736376. 3" ,"",""
;;; after 5 seconds, the bridge ends (152 dials #7007?)

" EV_BRI DGE_START", " 2007- 05- 09

12: 46: 25", "fxs. 52", " 152", 152", " "" "151", "extension","Zap/52-1","Di al ", " Zap/ 51| 30| Tt Wv', " DOCUMENTATI ON', " ", " 1178736376. 3","","Z
ap/51-1" ;;; extraneous O-second bridge?

" EV_BRI DGE_END", " 2007- 05- 09

12: 46: 25", "fxs. 52", " 152", "152","","" "151", "extensi on", " Zap/ 52-1","Di al ", " Zap/ 51| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736376. 3" ,"",""
"EV_PARK_START", "2007- 05-09 12:46:27","","151",6"152","", "" "" "extension","Zap/51-1", " Par ked

Cal | ", "", " DOCUMENTATI ON', "", " 1178736378. 4","","" ;;; 151 is parked

"EV_HANGUP", "2007- 05- 09 12:46: 29", "fxs. 52", "152","152","" "" "h", "extension","Zap/52-1","","", " DOCUMENTATI ON', "", 6 "1178736376. 3"

s ;.5 152 hangs up 2 sec later

" EV_CHAN_END", "2007- 05- 09

12: 46: 29", "fxs. 52", "152","152","" "" "h", "extension","Zap/52-1","", "", " DOCUMENTATI ON',"", "1178736376.3","","" ;;; 152's channel
goes away

(151 is parked and listening to MOH now, 150 picks up, and dials 701)

" EV_CHAN_START", " 2007- 05- 09

12:47:08", "fxs. 50", "150","", """, "", "s" “"extension","Zap/50-1","", "", " DOCUMENTATI ON',6"",6 "1178736428.5","","" ;;; 150 picks up the
phone, dials 701

"EV_PARK_END', "2007-05-09 12:47:11","",6 "151",6"152", """, "" "" "extension","Zap/51-1", "Parked

Cal ", "", " DOCUMENTATI ON', "",6"1178736378.4","","" ;;; 151's park comes to end

" EV_ANSVER', " 2007- 05- 09

12:47: 11", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON', "", " 1178736428. 5" ,"","" ;;;

150 gets answer (tw ce)
" EV_ANSWER", " 2007- 05- 09

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 337

12: 47:12","fxs. 50", "150", "150","","", "701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON', "", " 1178736428.5","","" ;;;
" EV_BRI DGE_START", " 2007- 05- 09

12:47: 12", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " ParkedCal | ", " 701", " DOCUMENTATI ON", " ", " 1178736428. 5", "", " Zap/ 51
-1" ;;; bridge begins between 150 and recently parked 151 (150 and 151 are conversing, then 151 hits flash)

" EV_CHAN_START", " 2007- 05- 09

12:47: 51", "fxs. 51", " 151", """, ", """ "s", "extension","Zap/51-2","","", " DOCUVENTATI ON',6"",6 "1178736471.6","","" ;;; 39 seconds |ater,
51-2 channel is created. (151 flashes hook)

"EV_HOOKFLASH', "2007- 05-09 12:47:51","","151","1562", "" ", "" "extension","Zap/51-1", "Bridged

Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", " 1178736378. 4", "", "Zap/ 51-2" ;;; a marker to record that 151 flashed the hook

" EV_BRI DGE_END", " 2007- 05- 09

12: 47: 51", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " ParkedCal | ", " 701", " DOCUMENTATI ON', " ", " 1178736428. 5", "", " Zap/ 51
-1" ;;; bridge ends between 150 and 151

" EV_BRI DGE_START", " 2007- 05- 09

12:47: 51", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON', "", " 1178736428. 5", "", " Zap/ 51
-1" ;;; O-second bridge from150 to ? 150 gets no sound at all

" EV_BRI DGE_END", " 2007- 05- 09

12:47: 51", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " ParkedCal | ", " 701", " DOCUMENTATI ON", " ", " 1178736428. 5", "", " Zap/ 51
-1t

" EV_BRI DGE_START", " 2007- 05- 09

12:47: 51", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON', "", " 1178736428. 5", "", " Zap/ 51
-1" ;;; bridge start on 150

(151 has dialtone after hitting flash; dials 152)

" EV_APP_START", "2007- 05- 09

12: 47: 55", "fxs. 51", "151", " 151", ", "", " 152", "extensi on", " Zap/ 51-2","Di al ", " Zap/ 52| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736471. 6","",""
;s 151-2 dials 152 after 4 seconds

"EV_CHAN_START", "2007- 05-09 12:47:55","fxs.52","152",""
,"","" 55 152 channel created to ring 152.

(152 ringing)

"EV_ANSVWER', "2007- 05- 09 12:47:58","", "152","151","", """ " 152", "extensi on", "Zap/ 52-1", " AppDi al ", " (Qut goi ng

Li ne)", " DOCUMENTATI ON', "", " 1178736475. 7","","" ;;; 3 seconds |ater, 152 answers

" EV_ANSWER", " 2007- 05- 09

12:47: 58", "fxs. 51", "151", 151", ", "", " 152", "extensi on", " Zap/ 51-2","Di al ", " Zap/ 52| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736471. 6","",""
N and 151-2 al so answers

" EV_BRI DGE_START", " 2007- 05- 09

12:47: 59", "fxs. 51", "151","151","", """, "152", "ext ensi on", " Zap/ 51- 2", " Di al ", " Zap/ 52| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736471.6","","Z
ap/51-1" ;;; 1 second later, bridge forned betw. 151-2 and 151 (152 answers, 151 and 152 convering; 150 is listening to silence;
151 hits flash again... to start a 3way)

"EV_3WAY_START", "2007- 05-09 12:48:58","","151",6"152","" ", "extension","Zap/51-1", "Bridged

Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", " 1178736378. 4", "", " Zap/ 51-2" ;;; another hook-flash to begin a 3-way conference

" EV_BRI DGE_END", " 2007- 05- 09

12:48:58", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON", "", " 1178736428. 5", "", " Zap/ 51
-1" ;;; - alnmpst 1 minute later, the bridge ends (151 flashes hook again)

" EV_BRI DGE_START", " 2007- 05- 09

12: 48: 58", "fxs. 50", " 150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON", "", " 1178736428. 5", "", " Zap/ 51
-1" ;;; O-second bridge at 150. (3 way conf forned)

" EV_BRI DGE_END", " 2007- 05- 09

12: 48: 58", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON', "", " 1178736428. 5",
-1t

" EV_BRI DGE_START", " 2007- 05- 09

12: 48: 58", "fxs. 50", " 150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON", "", " 1178736428. 5", "", " Zap/ 51
-1" ;;; bridge starts for 150

(3way now, then 151 hangs up.)

" EV_BRI DGE_END", " 2007- 05- 09

12:49: 26", "fxs. 50", " 150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par kedCal | ", " 701", " DOCUMENTATI ON", "", " 1178736428. 5", "", " Zap/ 51
-1" ;;; 28 seconds l|ater, bridge ends

"EV_HANGUP", "2007- 05- 09 12: 49:26","","151","1562", """, "" "" "extension","Zap/51-1", "Bridged

Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", " 1178736378. 4","","" ;;; 151 hangs up, |eaves 150 and 152 connected

"EV_CHAN_END', "2007-05- 09 12:49:26","","151","152","", """ "" "extension","Zap/51-1", "Bridged

Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", " 1178736378. 4", "", ;5 151 channel ends

" EV_CHAN_END", "2007- 05- 09

12: 49: 26", "fxs. 51", " 151", "151","","" "h", "extensi on", " Zap/ 51- 2ZOVBI E", " ", " ", " DOCUMENTATI ON', " ", " 1178736428.5","","" ;;; 152-2
channel ends (zonbie)

(just 150 and 152 now)

" EV_BRI DGE_END", " 2007- 05- 09

12:50: 13", "fxs. 50", "150", "150","","", "152", "ext ensi on", " Zap/ 50- 1", "Di al ", " Zap/ 52| 30| Tt Wv', " DOCUMENTATI ON", "", " 1178736471. 6","",""
;. 47 sec later, the bridge from 150 to 152 ends

"EV_HANGUP", "2007- 05-09 12:50:13","","152","151","" """ "" "extension","Zap/52-1", "Bri dged

Cal | ", " Zap/ 50- 1", " DOCUVMENTATI ON", " 1178736475. 7 ;75 152 hangs up

"EV_CHAN_END', "2007- 05-09 12:50:13","","152","151","","","" "extension","Zap/52-1", "Bri dged

Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", " 1178736475. 7","","" ;;; 152 channel ends

" EV_HANGUP", " 2007- 05- 09

12:50: 13", "fxs. 50", " 150", "150","","", "h", "ext ensi on", " Zap/ 50- 1", ""

", " DOCUMENTATI ON', "", " 1178736475. 7"

","s", "extension","Zap/52-1",""

", "Zap/ 51

", " DOCUMENTATI ON', "","1178736471.6","","" ;;; 150 hangs up

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

338

"EV_CHAN_END', "2007- 05- 09
12:50: 13", "fxs. 50", "150", "150","","", "h", "ext ensi on", " Zap/ 50- 1", " "

", " DOCUMENTATI ON*, "", " 1178736471.6","",""

150 ends

In terms of Manager events, the above Events correspond to the following 80 Manager events:

Event: Newchannel
Privilege: call,all
Channel : Zap/52-1
State: Rsrvd

Cal | er| DNum 152

Cal | er | DName: fxs. 52
Uni quei d: 1178801102.5

Event: Newcallerid

Privilege: call,all

Channel : Zap/52-1

Cal | er| DNum 152

Cal | er| DName: fxs. 52

Uni quei d: 1178801102.5

CID-CallingPres: 0 (Presentation Allowed, Not Screened)
Event: Newcallerid

Privilege: call,all

Channel : Zap/52-1

Cal | er| DNum 152

Cal | er | DName: fxs. 52

Uni quei d: 1178801102.5

CID-CallingPres: 0 (Presentation Allowed, Not Screened)

Event: Newstate
Privilege: call,all
Channel : Zap/52-1
State: Ring

Cal | er| DNum 152

Cal | er| DNare: fxs. 52
Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,all
Channel : Zap/52-1

Cont ext: extension

Ext ension: 151
Priority: 1
Application: Set

AppDat a: CDR(myvar) =zi ngo
Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,all
Channel : Zap/52-1

Cont ext: extension
Extension: 151
Priority: 2
Application: Dial
AppDat a: Zap/ 51| 30| Tt Wv
Uni quei d: 1178801102.5

Event: Newchannel
Privilege: call,all
Channel : Zap/51-1
State: Rsrvd

Cal | er| DNum 151

Cal | er| DName: fxs. 51
Uni quei d: 1178801108. 6
Event: Newstate
Privilege: call,all
Channel : Zap/51-1
State: Ringing

Cal | er| DNum 152

Cal | er | DName: fxs. 52
Uni quei d: 1178801108. 6

Event: Dial

Privilege: call,all
SubEvent: Begin

Source: Zap/52-1
Destination: Zap/51-1

Cal | er| DNum 152

Cal | er| DName: fxs. 52
SrcUni quel D 1178801102. 5
Dest Uni quel D: 1178801108. 6
Event: Newcallerid
Privilege: call,all

Channel : Zap/51-1

Cal l erl DNum 151

Cal | er | DName: <Unknown>
Uni quei d: 1178801108. 6
CID-CallingPres: 0 (Presentation Allowed, Not Screened)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

339

Event: Newstate
Privilege: call,all
Channel : Zap/52-1
State: Ringing

Cal | er| DNum 152

Cal | er | DName: fxs. 52
Uni quei d: 1178801102.5
Event: Newstate
Privilege: call,all
Channel : Zap/51-1
State: Up

Cal l er| DNum 151

Cal | er| DNane: <unknown>
Uni quei d: 1178801108. 6
Event: Newstate
Privilege: call,all
Channel : Zap/52-1
State: Up

Cal | er| DNum 152

Cal | er | DName: fxs. 52
Uni quei d: 1178801102.5

Event: Link

Privilege: call,all
Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.5
Uni quei d2: 1178801108.
Cal l erl D1: 152

Cal lerl D2: 151

Event: Unlink
Privilege: call,all
Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.5
Uni quei d2: 1178801108. 6
Cal l erl D1: 152

Cal lerl D2: 151

o

Event: Link

Privilege: call,all
Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.5
Uni quei d2: 1178801108.
Cal lerID1: 152

Cal lerl D2: 151

Event: Unlink
Privilege: call,all
Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.5
Uni quei d2: 1178801108.
Cal lerID1: 152

Cal lerl D2: 151

(2]

(2]

Event: ParkedCal |
Privilege: call,all
Exten: 701

Channel : Zap/51-1
From Zap/52-1

Ti meout: 45

Cal | erl DNum 151
Cal | er | DName: <unknown>
Event: Dial
Privilege: call,all
SubEvent: End
Channel : Zap/52-1
Di al Status: ANSWER

Event: Newexten
Privilege: call,all
Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 1
Application: Goto
AppDat a: | abel 1

Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,all
Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 4
Application: Goto
AppDat a: | abel 2

Uni quei d: 1178801102.5

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 340

Event: Newexten
Privilege: call,all
Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 2
Application: NoOp
AppData: | n Hangup! nyvar is zingo and accountcode is billsec is 26 and duration is 40 and end is 2007-05-10 06: 45: 42.
Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,all
Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 3
Application: Goto
AppDat a: | abel 3

Uni quei d: 1178801102.5

Event: Newexten

Privilege: call,all

Channel : Zap/52-1

Cont ext: extension
Extension: h

Priority: 5

Application: NoOp

AppDat a: More Hangup nessage after hoppi ng around”
Uni quei d: 1178801102.5
Event: Hangup

Privilege: call,all

Channel : Zap/52-1

Uni quei d: 1178801102.5
Cause: 16

Cause-txt: Nornal Clearing

Event: Newchannel
Privilege: call,all
Channel : Zap/ 50-1
State: Rsrvd

Cal | er| DNum 150

Cal | er| DNane: fxs.50
Uni quei d: 1178801162. 7
Event: Newcallerid
Privilege: call,all
Channel : Zap/50-1

Cal | er| DNum 150

Cal | er| DNane: fxs. 50
Uni quei d: 1178801162. 7
CID-CallingPres: 0 (Presentation Allowed, Not Screened)

Event: Newcallerid
Privilege: call,all
Channel : Zap/50-1

Cal | er| DNum 150

Cal | er| DNane: fxs. 50
Uni quei d: 1178801162. 7
CID-CallingPres: 0 (Presentation Allowed, Not Screened)
Event: Newstate
Privilege: call,all
Channel : Zap/ 50-1
State: Ring

Cal | er| DNum 150

Cal | er| DNane: fxs.50
Uni quei d: 1178801162. 7

Event: Newexten
Privilege: call,all
Channel : Zap/ 50-1

Cont ext: extension
Extension: 701
Priority: 1
Application: ParkedCall
AppDat a: 701

Uni quei d: 1178801162. 7
Event: UnParkedCal |
Privilege: call,all
Exten: 701

Channel : Zap/51-1
From Zap/50-1

Cal l erl DNum 151

Cal | er| DNane: <unknown>
Event: Newstate
Privilege: call,all
Channel : Zap/ 50-1
State: Up

Cal | erl DNum 150

Cal | er| DNane: fxs. 50
Uni quei d: 1178801162. 7

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

341

Event: Link

Privilege: call,all
Channel 1: Zap/ 50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108. 6
Cal l erl D1: 150

Cal lerl D2: 151

Event: Newchannel
Privilege: call,all
Channel : Zap/51-2
State: Rsrvd

Cal | erl DNum 151

Cal | er | DName: fxs. 51
Uni quei d: 1178801218.8

Event: Unlink
Privilege: call,all
Channel 1: Zap/ 50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108.
Cal l erl D1: 150

Cal lerl D2: 151

Event: Link

Privilege: call,all
Channel 1: Zap/ 50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108.
Cal l erl D1: 150

Cal lerl D2: 151

o

o

Event: Unlink
Privilege: call,all
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108.
Cal l erl D1: 150

Cal lerl D2: 151

Event: Link

Privilege: call,all
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108.
Cal l er1 D1: 150

Cal lerl D2: 151

Event: Newcallerid
Privilege: call,all
Channel : Zap/51-2

Cal | erl DNum 151

Cal | er | DName: fxs. 51
Uni quei d: 1178801218.8
CID-CallingPres: 0 (Presentation Allowed, Not Screened)

(2]

(2]

Event: Newcallerid
Privilege: call,all
Channel : Zap/51-2

Cal | erl DNum 151

Cal | er | DName: fxs. 51
Uni quei d: 1178801218.8
CID-CallingPres: 0 (Presentation Allowed, Not Screened)
Event: Newstate
Privilege: call,all
Channel : Zap/51-2
State: Ring

Cal | erl DNum 151

Cal | er | DName: fxs. 51
Uni quei d: 1178801218.8

Event: Newexten
Privilege: call,all
Channel : Zap/51-2

Cont ext: extension

Ext ensi on: 152

Priority: 1

Application: Set

AppDat a: CDR(myvar) =zi ngo
Uni quei d: 1178801218.8
Event: Newexten
Privilege: call,all
Channel : Zap/51-2

Cont ext: extension

Ext ension: 152

Priority: 2

Application: Dial

AppDat a: Zap/ 52| 30| Tt Wv

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

342

Uni quei d: 1178801218.8

Event: Newchannel
Privilege: call,all
Channel : Zap/52-1
State: Rsrvd

Cal | er| DNum 152

Cal | er | DName: fxs. 52
Uni quei d: 1178801223.9
Event: Newstate
Privilege: call,all
Channel : Zap/52-1
State: Ringing

Cal l erl DNum 151

Cal | er| DName: fxs. 51
Uni quei d: 1178801223.9
Event: Dial

Privilege: call,all
SubEvent: Begin
Source: Zap/51-2
Destination: Zap/52-1
Cal l er| DNum 151

Cal | er| DName: fxs. 51
SrcUni quel D 1178801218. 8
Dest Uni quel D 1178801223. 9

Event: Newcallerid
Privilege: call,all
Channel : Zap/52-1

Cal | er| DNum 152

Cal | er| DNane: <Unknown>
Uni quei d: 1178801223.9
CID-CallingPres: 0 (Presentation Allowed, Not Screened)
Event: Newstate
Privilege: call,all
Channel : Zap/51-2
State: Ringing

Cal | er| DNum 151

Cal | er| DName: fxs. 51

Uni quei d: 1178801218.8

Event: Newstate
Privilege: call,all
Channel : Zap/52-1
State: Up

Cal | er| DNum 152

Cal | er| DNane: <unknown>
Uni quei d: 1178801223.9
Event: Newstate
Privilege: call,all
Channel : Zap/51-2
State: Up

Cal | erl DNum 151

Cal | er | DName: fxs. 51
Uni quei d: 1178801218.8

Event: Link

Privilege: call,all
Channel 1: Zap/51-2
Channel 2: Zap/52-1

Uni quei d1: 1178801218.8
Uni quei d2: 1178801223.
Cal lerl D1: 151

Cal l erl D2: 152

Event: Unlink
Privilege: call,all
Channel 1: Zap/ 50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162. 7
Uni quei d2: 1178801108.
Cal l erl D1: 150

Cal lerl D2: 151

©

o

Event: Link

Privilege: call,all
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162.7
Uni quei d2: 1178801108.
Cal lerID1: 150

Cal lerl D2: 151

Event: Unlink
Privilege: call,all
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162.7
Uni quei d2: 1178801108.
Cal lerID1: 150

Cal lerl D2: 151

(2]

(2]

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

343

Event: Link

Privilege: call,all
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162.7
Uni quei d2: 1178801108. 6
Cal lerID1: 150

Cal lerl D2: 151

Event: Unlink
Privilege: call,all
Channel 1: Zap/50-1
Channel 2: Zap/51-1

Uni quei d1: 1178801162.7
Uni quei d2: 1178801108. 6
Cal lerI D1: 150

Cal lerl D2: 151

Event: Hangup
Privilege: call,all
Channel : Zap/51-1

Uni quei d: 1178801108. 6
Cause: 16

Cause-txt: Nornal

C earing

Event: Newexten
Privilege: call,all
Channel : Zap/ 50-1

Cont ext: extension
Extension: h

Priority: 1
Application: Goto
AppDat a: | abel 1

Uni quei d: 1178801162. 7
Event: Newexten
Privilege: call,all
Channel : Zap/50-1

Cont ext: extension
Extension: h

Priority: 4
Application: Goto
AppDat a: | abel 2

Uni quei d: 1178801162. 7

Event: Newexten
Privilege: call,all
Channel : Zap/50-1

Cont ext: extension
Extension: h

Priority: 2
Application: NoQp
AppData: | n Hangup! nyvar is and accountcode is billsec is 0 and duration is 0 and end is 2007-05-10 06: 48: 37.
Uni quei d: 1178801162. 7
Event: Newexten
Privilege: call,all
Channel : Zap/ 50-1

Cont ext: extension
Extension: h

Priority: 3
Application: Goto
AppDat a: | abel 3

Uni quei d: 1178801162. 7

Event: Newexten
Privilege: call,all
Channel : Zap/ 50-1
Cont ext: extension
Extension: h
Priority: 5
Appl i cation: NoOp
AppDat a: Mre
Hangup nessage after hoppi ng around”
Uni quei d: 1178801162. 7

Event: Masquerade
Privilege: call,all

Cl one: Zap/50-1
CloneState: Up
Original: Zap/51-2
Oiginal State: Up
Event: Renane
Privilege: call,all

d dname: Zap/ 50- 1
Newnane: Zap/50- 1<MASQ>
Uni quei d: 1178801162. 7

Event: Renane
Privilege: call,all
d dname: Zap/ 51-2

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

344

Newnane: Zap/50-1

Uni quei d: 1178801218.8

Event: Renane

Privilege: call,all

d dnane: Zap/ 50- 1<MASQ>

Newnane: Zap/51-2<ZOMVBI B>

Uni quei d: 1178801162. 7

Event: Hangup

Privilege: call,all

Channel : Zap/ 51- 2<ZOVBI E>
Uni quei d: 1178801162. 7

Cause: 0

Cause-txt: Unknown

Event: Unlink
Privilege: call,all
Channel 1: Zap/ 50-1
Channel 2: Zap/52-1

Uni quei d1: 1178801218.8
Uni quei d2: 1178801223. 9
Cal l erl D1: 150

Cal l erl D2: 152

Event: Hangup
Privilege: call,all
Channel : Zap/52-1

Uni quei d: 1178801223.9
Cause: 16

Cause-txt: Nornal Clearing

Event: Dial
Privilege: call,all
SubEvent: End
Channel : Zap/50-1
Di al Status: ANSWER
Event: Newexten
Privilege: call,all
Channel : Zap/50-1
Cont ext: extension
Extension: h
Priority: 1
Application: Goto
AppDat a: | abel 1

Uni quei d: 1178801218.8

Event: Newexten
Privilege: call,all
Channel : Zap/50-1

Cont ext: extension
Extension: h

Priority: 4
Application: Goto
AppDat a: | abel 2

Uni quei d: 1178801218.8
Event: Newexten
Privilege: call,all
Channel : Zap/ 50-1

Cont ext: extension
Extension: h

Priority: 2

Appl i cation: NoOp
AppData: In Hangup! nyvar is and accountcode is billsec is 90 and duration is 94 and end is 2007-05-10 06: 48: 37.
Uni quei d: 1178801218.8

Event: Newexten
Privilege: call,all
Channel : Zap/ 50-1

Cont ext: extension
Extension: h

Priority: 3
Application: Goto
AppDat a: | abel 3

Uni quei d: 1178801218.8
Event: Newexten
Privilege: call,all
Channel : Zap/50-1

Cont ext: extension
Extension: h

Priority: 5
Application: NoQp
AppDat a: Mre Hangup nessage after hoppi ng around”
Uni quei d: 1178801218.8
Event: Hangup
Privilege: call,all
Channel : Zap/ 50-1

Uni quei d: 1178801218.8

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

345

Cause: 16

Cause-txt: Nornal Clearing

And, humorously enough, the above 80 manager events, or 42 CEL events, correspond to the following two CDR records (at the moment!):

""fxs.52" 152","152","
17:35: 56", "2007- 05- 09
""fxs.50" 150", "150","
17:37:59", "2007- 05- 09

h", "extension", "Zap/52-1", " Zap/ 51-1", "NoOp", "More Hangup nessage after hopping around"","2007-05-09
17:36: 20", "2007-05-09 17:36:36","40", " 16", " ANSWERED", " DOCUMENTATI ON', " ", " 1178753756. 0", ""

152", "extensi on", " Zap/ 50- 1", " Zap/ 51- 1", "NoCp", "More Hangup nessage after hoppi ng around”
17:38: 06", "2007-05-09 17:39:11","72","65", " ANSWERED", " DOCUMENTATI ON', ", "1178753871. 3", ""

"2007-05-09

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

346

CEL Events and Fields

While CDRs and the Manager are basically both event tracking mechanisms, CEL tries to track only those events that might pertain to billing issues.

Table of CEL Events

Event
CHAN_START
CHAN_END
ANSWER
HANGUP
CONF_ENTER
CONF_EXIT
CONF_START
CONF_END
APP_START
APP_END
PARK_START
PARK_END
BRIDGE_START
BRIDGE_END
BRIDGE_UPDATE
3WAY_START
3WAY_END
BLINDTRANSFER
ATTENDEDTRANSFER
TRANSFER
PICKUP
FORWARD
HOOKFLASH
LINKEDID_END

USER_DEFINED

Table of CEL Event Fields

Table 11.2: List of CEL Event Fields

Field
eventtype
eventtime

cid_name

Description

The time a channel was created

The time a channel was terminated

The time a channel was answered (ie, phone taken off-hook)
The time at which a hangup occurred

The time a channel was connected into a conference room
The time a channel was removed from a conference room
The time the first person enters a conference room

The time the last person left a conference room (and turned out the lights?)
The time a tracked application was started

the time a tracked application ended

The time a call was parked

Unpark event

The time a bridge is started

The time a bridge is ended

This is a replacement channel (Masquerade)

When a 3-way conference starts (usually via attended transfer)
When one or all exit a 3-way conference

When a blind transfer is initiated

When an attended transfer is initiated

Generic transfer initiated; not used yet...?

This channel picked up the peer channel

This channel is being forwarded somewhere else

So far, when a hookflash event occurs on a DAHDI interface
The last channel with the given linkedid is retired

Triggered from the dialplan, and has a name given by the user

Description
The name of the event; see the above list.
The time the event happened

CID name field

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 347

cid_num CID number field

cid_ani CID ANI field

cid_rdnis CID RDNIS field

cid_dnid CID DNID field

exten The extension in the dialplan

context The context in the dialplan

channame The name assigned to the channel in which the event took place

appname The name of the current application

appdata The arguments that will be handed to that application

amaflags The AMA flags associated with the event; user assignable.

accountcode A user assigned datum (string)

peeraccount A user assigned datum (string) on the peer.

uniqueid Each Channel instance gets a unique ID associated with it.

linkedid the per-call id, spans several events, possibly.

userfield A user assigned datum (string)

peer For bridge or other 2-channel events, this would be the other channel
name

userdeftype User defined event name

extra Extra information associated with the event.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 348

CEL Applications and Functions

Top-level page for information on CEL Applications and Functions

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 349

CEL Function

* * * * ® THIS IS NO LONGER TRUE REWRITE *****

The CEL function parallels the CDR function, for fetching values from the channel or event. It has some notable notable differences, though! For instance,
CEL data is not stored on the channel. Well, not much of it, anyway! You can use the CEL function to set the amaflags, accountcode, and userfield, which
are stored on the channel.

Channel variables are not available for reading from the CEL function, nor can any variable name other than what's in the list, be set. CDRs have a
structure attached to the channel, where the CDR function could access the values stored there, or set the values there. CDRs could store their own
variable lists, but CEL has no such storage. There is no reason to store any event information, as they are immediately output to the various backends at
the time they are generated.

See the description for the CEL function from the CLI: core show function CEL
Here is a list of all the available channel field names:

® cidname
® userfield
® cidnum

* amaflags
® cidani

® cidrdnis

® ciddnid

® appdata
® exten

® accountcode
® context

® uniqueid
® channame
® appname
® peer

® eventtime
® eventtype

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 350

CELGenUserEvent Application

This application allows the dialplan to insert custom events into the event stream.
For more information, in the CLI, type: core show application CELGenUserEvent
Its arguments take this format:

CELGenUser Event (event nane)

Please note that there is no restrictions on the name supplied. If it happens to match a standard CEL event name, it will ook like that event was generated.
This could be a blessing or a curse!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 351

CEL Configuration Files

cel.conf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 352

Generating Billing Information from CEL

° ° ° ® This is the Next Big Task ****

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 353

CEL Storage Backends

Right now, the CEL package will support CSV, Customized CSV, ODBC, PGSQL, TDS, Sqlite3, and Radius back ends. See the doc/celdriver.tex file for
how to use these back ends.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 354

MSSQL CEL Backend

Asterisk can currently store Channel Events into an MSSQL database in two different ways: cel_odbc or cel_tds

Channel Event Records can be stored using unixODBC (which requires the FreeTDS package) cel_odbc or directly by using just the FreeTDS package cel
_tds

The following provide some examples known to get asterisk working with mssq|.

1 Only choose one db connector.

ODBC using cel_odbc

Compile, configure, and install the latest unixODBC package:

tar -zxvf uni xODBC-2.2.9.tar.gz &% cd uni xODBC-2.2.9 && ./configure --sysconfdir=/etc --prefix=/usr --disable-gui &% nake && nake
install

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz & cd freetds-0.62.4 & ./configure --prefix=/usr --wth-tdsver=7.0 \ --with-unixodbc=/usr/lib &&
neke && neke install

Compile, or recompile, asterisk so that it will now add support for cel_odbc.

neke clean && ./configure --wth-odbc & make update && neke && neke install

Setup odbc configuration files.
These are working examples from my system. You will need to modify for your setup. You are not required to store usernames or passwords here.

letc/odbcinst.ini

[FreeTDS]

Description = FreeTDS CDBC driver for MSSQL
Driver = /usr/lib/libtdsodbc. so

Setup = /usr/lib/libtdsS. so

FileUsage = 1

[etc/odbc.ini

[MBSQL- ast eri sk]

description = Asterisk ODBC for MSSQL
driver = FreeTDS

server = 192.168.1.25

port = 1433

dat abase = voi pdb

tds_version = 7.0

| anguage = us_english

Only install one database connector. Do not confuse asterisk by using both ODBC (cel_odbc) and FreeTDS (cel_tds). This command will erase
the contents of cel_tds.conf

| [-f /etc/asterisk/cel _tds.conf] > /etc/asterisk/cel_tds.conf

1 unixODBC requires the freeTDS package, but asterisk does not call freeTDS directly.

Now set up cel_odbc configuration files.
These are working samples from my system. You will need to modify for your setup. Define your usernames and passwords here, secure file as well.

letc/asterisk/cel_odbc.conf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 355

https://wiki/pages/createpage.action?spaceKey=AST&title=cel_odbc&linkCreation=true&fromPageId=5242952
https://wiki/pages/createpage.action?spaceKey=AST&title=cel_tds&linkCreation=true&fromPageId=5242952
https://wiki/pages/createpage.action?spaceKey=AST&title=cel_tds&linkCreation=true&fromPageId=5242952

[gl obal]
dsn=MSSQL- ast eri sk
user name=voi pdbuser
passwor d=voi pdbpass
| oguni quei d=yes

And finally, create the 'cel' table in your mssql database.

CREATE TABLE cel (
[eventtype] [varchar] (30) NOT NULL ,
[eventtine] [datetine] NOT NULL
[cidnane] [varchar] (80) NOT NULL
[cidnun] [varchar] (80) NOT NULL
[cidani] [varchar] (80) NOT NULL
[cidrdnis] [varchar] (80) NOT NULL
[ciddnid] [varchar] (80) NOT NULL
[exten] [varchar] (80) NOT NULL ,
[context] [varchar] (80) NOT NULL
[channame] [varchar] (80) NOT NULL
[appnane] [varchar] (80) NOT NULL
[appdata] [varchar] (80) NOT NULL
[amaflags] [int] NOT NULL
[account code] [varchar] (20) NOT NULL
[uni queid] [varchar] (32) NOT NULL
[peer] [varchar] (80) NOT NULL
[userfield] [varchar] (255) NOT NULL

Start asterisk in verbose mode, you should see that asterisk logs a connection to the database and will now record every desired channel event at the

moment it occurs.
FreeTDS, using cel_tds

Compile, configure, and install the latest FreeTDS package:

‘ tar -zxvf freetds-0.62.4.tar.gz & cd freetds-0.62.4 && ./configure --prefix=/usr --wth-tdsver=7.0 make &% make install

Compile, or recompile, asterisk so that it will now add support for cel_tds.

‘ neke clean && ./configure --with-tds &% neke update &% make &% make install

the contents of cel_odbc.conf

Only install one database connector. Do not confuse asterisk by using both ODBC (cel_odbc) and FreeTDS (cel_tds). This command will erase

| [-f /etc/asterisk/cel _odbc.conf] > /etc/asterisk/cel_odbc. conf

Setup cel_tds configuration files.

These are working samples from my system. You will need to modify for your setup. Define your usernames and passwords here, secure file as well.

letc/asterisk/cel_tds.conf

[gl obal]

host nane=192. 168. 1. 25
port =1433
dbnane=voi pdb

user =voi pdbuser
passwor d=voi pdpass
char set =Bl G5

And finally, create the 'cel' table in your mssql database.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

356

CREATE TABLE cel (
[eventtype] [varchar] (30) NULL ,
[eventtine] [datetine] NULL ,
[cidnane] [varchar] (80) NULL ,
[cidnun] [varchar] (80) NULL ,
[cidani] [varchar] (80) NULL ,
[cidrdnis] [varchar] (80) NULL ,
[ciddnid] [varchar] (80) NULL ,
[exten] [varchar] (80) NULL ,
[context] [varchar] (80) NULL ,
[channame] [varchar] (80) NULL ,
[appnane] [varchar] (80) NULL ,
[appdata] [varchar] (80) NULL ,
[amafl ags] [varchar] (16) NULL ,
[account code] [varchar] (20) NULL ,
[uni queid] [varchar] (32) NULL ,
[userfield] [varchar] (255) NULL ,
[peer] [varchar] (80) NULL

Start asterisk in verbose mode, you should see that asterisk logs a connection to the database and will now record every call to the database when it's

complete.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

357

MySQL CEL Backend

Using MySQL for Channel Event records is supported by using ODBC and the cel_odbc module.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 358

PostgreSQL CEL Backend

If you want to go directly to postgresql database, and have the cel_pgsql.so compiled you can use the following sample setup. On Debian, before compiling
asterisk, just install libpgxx-dev. Other distros will likely have a similiar package.

Once you have the compile done, copy the sample cel_pgsql.conf file or create your own.
Here is a sample:

letc/asterisk/cel_pgsql.conf

; Sanple Asterisk config file for CEL | ogging to PostgresSQ
[gl obal]

host nane=l ocal host

port =5432

dbnane=asteri sk

passwor d=passwor d

user =post gr es

tabl e=cel

Now create a table in postgresql for your cels

CREATE TABLE cel (
id serial ,
eventtype varchar (30) NOT NULL ,
eventtinme tinmestanp NOT NULL ,
user deftype varchar(255) NOT NULL ,
cid_nanme varchar (80) NOT NULL ,
cid_num varchar (80) NOT NULL ,
cid_ani varchar (80) NOT NULL ,
cid_rdnis varchar (80) NOT NULL ,
cid_dnid varchar (80) NOT NULL ,
exten varchar (80) NOT NULL ,
context varchar (80) NOT NULL ,
channame varchar (80) NOT NULL ,
appnare varchar (80) NOT NULL ,
appdata varchar (80) NOT NULL ,
anafl ags int NOT NULL ,
account code varchar (20) NOT NULL ,
peeraccount varchar (20) NOT NULL ,
uni quei d varchar (150) NOT NULL ,
l'inkedi d varchar (150) NOT NULL ,
userfield varchar (255) NOT NULL ,
peer varchar (80) NOT NULL

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 359

SQLite 3 CEL Backend

SQLite version 3 is supported in cel_sqlite3_custom.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 360

RADIUS CEL Backend

What is needed

®* FreeRADIUS server
® Radiusclient-ng library
® Asterisk PBX

Installation of the Radiusclient library

Download the sources

From http://developer.berlios.de/projects/radiusclient-ng/

Untar the source tarball:

root @ocal host:/usr/local /src# tar xvfz radiusclient-ng-0.5.2.tar.gz

Compile and install the library:

root @ocal host:/usr/local /src# cd radiusclient-ng-0.5.2

root @ocal host:/usr/local/src/radiusclient-ng-0.5.2#. /configure
root @ocal host:/usr/|ocal /src/radiusclient-ng-0.5.2# nake

root @ocal host:/usr/local/src/radiusclient-ng-0.5.2# nake install

Configuration of the Radiusclient library
By default all the configuration files of the radiusclient library will be in /usr/local/etc/radiusclient-ng directory.

File "radiusclient.conf' Open the file and find lines containing the following:

‘ aut hserver | ocal host ‘

This is the hostname or IP address of the RADIUS server used for authentication. You will have to change this unless the server is running on the same
host as your Asterisk PBX.

‘ acctserver |ocal host ‘

This is the hostname or IP address of the RADIUS server used for accounting. You will have to change this unless the server is running on the same host
as your Asterisk PBX.

File "servers"
RADIUS protocol uses simple access control mechanism based on shared secrets that allows RADIUS servers to limit access from RADIUS clients.
A RADIUS server is configured with a secret string and only RADIUS clients that have the same secret will be accepted.

You need to configure a shared secret for each server you have configured in radiusclient.conf file in the previous step. The shared secrets are stored in
lusr/localletc/radiusclient-ng/servers file.

Each line contains hostname of a RADIUS server and shared secret used in communication with that server. The two values are separated by white
spaces. Configure shared secrets for every RADIUS server you are going to use.

File "dictionary"

Asterisk uses some attributes that are not included in the dictionary of radiusclient library, therefore it is necessary to add them. A file called
dictionary.digium (kept in the contrib dir) was created to list all new attributes used by Asterisk. Add to the end of the main dictionary

file /usr/localletc/radiusclient-ng/dictionary the line:

$I NCLUDE / pat h/to/ di ctionary. di gi um

Install FreeRADIUS Server (Version 1.1.1)

Download sources tarball from:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 361

http://developer.berlios.de/projects/radiusclient-ng/

http://freeradius.org/

Untar, configure, build, and install the server:

root @ocal host:/usr/local /src# tar xvfz freeradius-1.1.1.tar.gz
root @ocal host:/usr/local/src# cd freeradius-1.1.1

root @ocal host"/usr/local /src/freeradius-1.1.1# ./configure
root @ocal host"/usr/local /src/freeradius-1.1. 1# make

root @ocal host"/usr/local/src/freeradius-1.1.1# nmake install

All the configuration files of FreeRADIUS server will be in /usr/local/etc/raddb directory.

Configuration of the FreeRADIUS Server

There are several files that have to be modified to configure the RADIUS server. These are presented next.

File "clients.conf"

File /usr/local/etc/raddb/clients.conf contains description of RADIUS clients that are allowed to use the server. For each of the clients you need to specify its
hostname or IP address and also a shared secret. The shared secret must be the same string you configured in radiusclient library.

Example:

client nyhost { secret = nysecret shortnane = foo }

This fragment allows access from RADIUS clients on "myhost" if they use "mysecret" as the shared secret. The file already contains an entry for localhost
(127.0.0.1), so if you are running the RADIUS server on the same host as your Asterisk server, then modify the existing entry instead, replacing the default
password.

File "dictionary"

1 Asof version 1.1.2, the dictionary.digium file ships with FreeRADIUS.

The following procedure brings the dictionary.digium file to previous versions of FreeRADIUS.

File /usr/local/etc/raddb/dictionary contains the dictionary of FreeRADIUS server. You have to add the same dictionary file (dictionary.digium), which you
added to the dictionary of radiusclient-ng library. You can include it into the main file, adding the following line at the end of file
lusr/localletc/raddb/dictionary:

$I NCLUDE / pat h/ t o/ di cti onary. di gi um

That will include the same new attribute definitions that are used in radiusclient-ng library so the client and server will understand each other.
Asterisk Accounting Configuration

Compilation and installation:
The module will be compiled as long as the radiusclient-ng library has been detected on your system.

By default FreeRADIUS server will log all accounting requests into /ust/local/var/log/radius/radacct directory in form of plain text files. The server will create
one file for each hostname in the directory. The following example shows how the log files look like.

Asterisk now generates Call Detail Records. See /include/asterisk/cel.h for all the fields which are recorded. By default, records in comma separated values
will be created in /var/log/asterisk/cel-csv.

The configuration file for cel_radius.so module is :
letc/asterisk/cel.conf This is where you can set CEL related parameters as well as the path to the radiusclient-ng library configuration file.

This is where you can set CDR related parameters as well as the path to the radiusclient-ng library configuration file.

Logged Values

® "Asterisk-Acc-Code", The account name of detail records
® "Asterisk-CidName",

® "Asterisk-CidNum",

® "Asterisk-Cidani",

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 362

http://freeradius.org/

® "Asterisk-Cidrdnis",

® "Asterisk-Ciddnid",

® "Asterisk-Exten",

® "Asterisk-Context", The destination context

® "Asterisk-Channame", The channel name

® "Asterisk-Appname"”, Last application run on the channel

® "Asterisk-App-Data"”, Argument to the last channel

® "Asterisk-Event-Time",

® "Asterisk-Event-Type",

® "Asterisk-AMA-Flags", DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
® "Asterisk-Unique-ID", Unique call identifier

® "Asterisk-User-Field" User field set via SetCELUserField

® "Asterisk-Peer" Name of the Peer for 2-channel events (like bridge)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 363

Channel Variables

What's a channel variable? Read on to find out why they're important and how they'll improve your quality of life.
There are two levels of parameter evaluation done in the Asterisk dial plan in extensions.conf.

1. The first, and most frequently used, is the substitution of variable references with their values.
2. Then there are the evaluations of expressions done in $[..]. This will be discussed below.

Asterisk has user-defined variables and standard variables set by various modules in Asterisk. These standard variables are listed at the end of this
document.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 364

Parameter Quoting

exten => s, 5, BackG ound, bl abl a
The parameter (blabla) can be quoted ("blabla"). In this case, a comma does not terminate the field. However, the double quotes will be passed down to the
Background command, in this example.

Also, characters special to variable substitution, expression evaluation, etc (see below), can be quoted. For example, to literally use a $ on the string
"$1231", quote it with a preceding
. Special characters that must be quoted to be used, are [] $ " \. (to write \itself, use a backslash.).

These Double quotes and escapes are evaluated at the level of the asterisk config file parser.

Double quotes can also be used inside expressions, as discussed below.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 365

About Variables

Parameter strings can include variables. Variable names are arbitrary strings. They are stored in the respective channel structure.

To set a variable to a particular value, do:

exten => 1, 2, Set (var nane=val ue)

You can substitute the value of a variable everywhere using ${variablename}. For example, to stringwise append $lala to $blabla and store result in $koko,
do:

exten => 1,2, Set (koko=${bl abl a} ${I al a})

There are two reference modes - reference by value and reference by name. To refer to a variable with its name (as an argument to a function that requires
a variable), just write the name. To refer to the variable's value, enclose it inside ${}. For example, Set takes as the first argument (before the =) a variable
name, so:

exten => 1, 2, Set (koko=l al a) exten => 1, 3, Set (${ koko} =bl abl a)

stores to the variable "koko" the value "lala" and to variable "lala" the value "blabla".
In fact, everything contained ${here} is just replaced with the value of the variable "here".

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 366

Variable Inheritance

Variable names which are prefixed by " will be inherited to channels that are created in the process of servicing the original channel in which the variable
was set. When the inheritance takes place, the prefix will be removed in the channel inheriting the variable. If the name is prefixed by ™
the variable is inherited and the "_" will remain intact in the new channel.

in the channel, then

In the dialplan, all references to these variables refer to the same variable, regardless of having a prefix or not. Note that setting any version of the variable
removes any other version of the variable, regardless of prefix.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 367

Variable Inheritance Examples

Set (__FOO=bar)

Sets an inherited version of "FOQ" variable Set(FOO=bar), Removes the inherited version and sets a local variable.

However, NoOp(${__FOQ}) is identical to NoOp(${FOO})

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 368

Selecting Characters from Variables

The format for selecting characters from a variable can be expressed as:

${variabl e_nane[:of fset[:length]]}

If you want to select the first N characters from the string assigned to a variable, simply append a colon and the number of characters to skip from the
beginning of the string to the variable name.

. Renpve the first character of extension, save in "nunber" variable
exten => _9X. , 1, Set (nunber =${ EXTEN: 1})

Assuming we've dialed 918005551234, the value saved to the 'number’ variable would be 18005551234. This is useful in situations when we require users
to dial a number to access an outside line, but do not wish to pass the first digit.

If you use a negative offset number, Asterisk starts counting from the end of the string and then selects everything after the new position. The following
example will save the numbers 1234 to the 'number' variable, still assuming we've dialed 918005551234.

; Renpbve everything before the last four digits of the dialed string
exten => _9X. , 1, Set (nunber =${ EXTEN: - 4})

We can also limit the number of characters from our offset position that we wish to use. This is done by appending a second colon and length value to the
variable name. The following example will save the numbers 555 to the 'number’ variable.

; Only save the middl e nunbers 555 fromthe string 918005551234
exten => _9X., 1, Set (nunber =${ EXTEN: 5: 3})

The length value can also be used in conjunction with a negative offset. This may be useful if the length of the string is unknown, but the trailing digits are.
The following example will save the numbers 555 to the 'number' variable, even if the string starts with more characters than expected (unlike the previous
example).

; Save the nunbers 555 to the 'nunber' variable
exten => _9X., 1, Set (nunber =${ EXTEN: - 7: 3})

If a negative length value is entered, Asterisk will remove that many characters from the end of the string.

; Set pin to everything but the trailing #.
exten => _XXXX#, 1, Set (pi n=${ EXTEN: O: - 1})

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 369

Expressions

Everything contained inside a bracket pair prefixed by a $ (like $[this]) is considered as an expression and it is evaluated. Evaluation works similar to (but is
done on a later stage than) variable substitution: the expression (including the square brackets) is replaced by the result of the expression evaluation.

For example, after the sequence:

exten => 1,1,Set(lala=$[1 + 2]) exten => 1,2, Set (koko=$[2 * ${lala}])

the value of variable koko is "6".

and, further:

exten => 1,1,Set,(lala=$[1 + 2]);

will parse as intended. Extra spaces are ignored.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 370

Spaces Inside Variables Values

If the variable being evaluated contains spaces, there can be problems.

For these cases, double quotes around text that may contain spaces will force the surrounded text to be evaluated as a single token. The double quotes
will be counted as part of that lexical token.

As an example:

exten => s, 6, CGotol f($] "${CALLERI D(nane)}" : "Privacy Manager"]?callerid-liar,s,1l:s,7)

The variable CALLERID(name) could evaluate to "DELOREAN MOTORS" (with a space) but the above will evaluate to:
* "DELOREAN MOTORS": "Privacy Manager"

and will evaluate to 0.

The above without double quotes would have evaluated to:
® DELOREAN MOTORS : Privacy Manager

and will result in syntax errors, because token DELOREAN is immediately followed by token MOTORS and the expression parser will not know how to
evaluate this expression, because it does not match its grammar.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 371

Operators

Operators are listed below in order of increasing precedence. Operators with equal precedence are grouped within { } symbols.

exprl | expr2
Return the evaluation of exprl if it is neither an empty string nor zero; otherwise, returns the evaluation of expr2.

exprl & expr2
Return the evaluation of exprl if neither expression evaluates to an empty string or zero; otherwise, returns zero.

exprl {=, >, >=, <, <=, I=} expr2
Return the results of floating point comparison if both arguments are numbers; otherwise, returns the results of string comparison using
the locale-specific collation sequence. The result of each comparison is 1 if the specified relation is true, or 0 if the relation is false.

exprl {+, -} expr2
Return the results of addition or subtraction of floating point-valued arguments.

exprl {, /, %} expr2*
Return the results of multiplication, floating point division, or remainder of arguments.

- exprl
Return the result of subtracting exprl from 0. This, the unary minus operator, is right associative, and has the same precedence as the !
operator.

I exprl
Return the result of a logical complement of exprl. In other words, if exprl is null, 0, an empty string, or the string "0", return a 1.
Otherwise, return a 0. It has the same precedence as the unary minus operator, and is also right associative.

exprl : expr2
The ;' operator matches exprl against expr2, which must be a regular expression. The regular expression is anchored to the beginning
of the string with an implicit ™.

If the match succeeds and the pattern contains at least one regular expression subexpression ™, the string corresponing to "\1' is returned; otherwise the
matching operator returns the number of characters matched. If the match fails and the pattern contains a regular expression subexpression the null string
is returned; otherwise 0.

Normally, the double quotes wrapping a string are left as part of the string. This is disastrous to the : operator. Therefore, before the regex match is made,
beginning and ending double quote characters are stripped from both the pattern and the string.

exprl =~ expr2
Exactly the same as the "' operator, except that the match is not anchored to the beginning of the string. Pardon any similarity to
seemingly similar operators in other programming languages! The ":" and "=~" operators share the same precedence.

exprl ? expr2 :: expr3

Traditional Conditional operator. If exprl is a number that evaluates to O (false), expr3 is result of the this expression evaluation.
Otherwise, expr2 is the result. If exprl is a string, and evaluates to an empty string, or the two characters ("), then expr3 is the result.
Otherwise, expr2 is the result. In Asterisk, all 3 exprs will be "evaluated”; if exprl is "true", expr2 will be the result of the "evaluation" of
this expression. expr3 will be the result otherwise. This operator has the lowest precedence.

exprl ~~ expr2

Concatenation operator. The two exprs are evaluated and turned into strings, stripped of surrounding double quotes, and are turned into
a single string with no invtervening spaces. This operator is new to trunk after 1.6.0; it is not needed in existing extensions.conf code.
Because of the way asterisk evaluates [] constructs (recursively, bottom- up), no is ever present when the contents of a [] is evaluated.
Thus, tokens are usually already merged at evaluation time. But, in AEL, various exprs are evaluated raw, and [] are gathered and treated
as tokens. And in AEL, no two tokens can sit side by side without an intervening operator. So, in AEL, concatenation must be explicitly
specified in expressions. This new operator will play well into future plans, where expressions (constructs) are merged into a single
grammar.

Parentheses are used for grouping in the usual manner.

Operator precedence is applied as one would expect in any of the C or C derived languages.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 372

Floating Point Numbers

In 1.6 and above, we shifted the $[...] expressions to be calculated via floating point numbers instead of integers. We use ‘long double' numbers when
possible, which provide around 16 digits of precision with 12 byte numbers.

To specify a floating point constant, the number has to have this format: D.D, where D is a string of base 10 digits. So, you can say 0.10, but you can't say
.10 or 20.- we hope this is not an excessive restriction!

Floating point numbers are turned into strings via the '%g'/'%Lg' format of the printf function set. This allows numbers to still 'look’ like integers to those
counting on integer behavior. If you were counting on 1/4 evaluating to 0, you need to now say TRUNC(1/4). For a list of all the truncation/rounding
capabilities, see the next section.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 373

Functions

In 1.6 and above, we upgraded the $[] expressions to handle floating point numbers. Because of this, folks counting on integer behavior would be
disrupted. To make the same results possible, some rounding and integer truncation functions have been added to the core of the Expr2 parser. Indeed,
dialplan functions can be called from $[..] expressions without the ${...} operators. The only trouble might be in the fact that the arguments to these
functions must be specified with a comma. If you try to call the MATH function, for example, and try to say 3 + MATH(7*8), the expression parser will
evaluate 7*8 for you into 56, and the MATH function will most likely complain that its input doesn't make any sense.

We also provide access to most of the floating point functions in the C library. (but not all of them).
While we don't expect someone to want to do Fourier analysis in the dialplan, we don't want to preclude it, either.

Here is a list of the 'builtin’ functions in Expr2. All other dialplan functions are available by simply calling them (read-only). In other words, you don't need to
surround function calls in $[...] expressions with ${...}. Don't jump to conclusions, though! - you still need to wrap variable names in curly braces!

® COS(x) x is in radians. Results vary from -1 to 1.

® SIN(x) x is in radians. Results vary from -1 to 1.

® TAN(x) x is in radians.

® ACOS(x) x should be a value between -1 and 1.

® ASIN(x) x should be a value between -1 and 1.

® ATAN(x) returns the arc tangent in radians; between -PI/2 and PI/2.

®* ATAN2(x,y) returns a result resembling y/x, except that the signs of both args are used to determine the quadrant of the result. Its result
is in radians, between -PI and PI.

® POW(x,y) returns the value of x raised to the power of y.

® SQRT(x) returns the square root of x.

® FLOOR(x) rounds x down to the nearest integer.

® CEIL(x) rounds x up to the nearest integer.

®* ROUND(x) rounds x to the nearest integer, but round halfway cases away from zero.

® RINT(x) rounds x to the nearest integer, rounding halfway cases to the nearest even integer.

®* TRUNC(x) rounds x to the nearest integer not larger in absolute value.

* REMAINDER(x,y) computes the remainder of dividing x by y. The return value is x - n*y, where n is the value x/y, rounded to the nearest
integer. If this quotient is 1/2, it is rounded to the nearest even number.

® EXP(x) returns e to the x power.

® EXP2(x) returns 2 to the x power.

® LOG(x) returns the natural logarithm of x.

® LOG2(x) returns the base 2 log of x.

® LOG10(x) returns the base 10 log of x.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 374

Expressions Examples

*'One Thousand Five Hundred" =~ "(T[Expressions Examples”])"
returns: Thousand

® "One Thousand Five Hundred" =~ "T[Expressions Examples”]"
returns: 8

® "One Thousand Five Hundred" : "T[Expressions Examples”]
returns: 0

® "8015551212":"(...)"
returns: 801

® "3075551212""...(...)"
returns: 555

® 1"One Thousand Five Hundred" =~ "T[Expressions Examples”]"
returns: 0
(because it applies to the string, which is non-null, which it turns to "0", and then looks for the pattern in the "0", and doesn't find it)

® I("One Thousand Five Hundred" : "T[Expressions Examples™]+")
returns: 1
(because the string doesn't start with a word starting with T, so the match evals to 0, and the ! operator invertsitto 1)

® 2+8/2
returns: 6
(because of operator precedence; the division is done first, then the addition)

® 2+8/2
returns: 6
Spaces aren't necessary

® (2+8)/12
returns: 5
of course

* (3+8)/2
returns: 5.5

®* TRUNC((3+8)/2)
returns: 5

®* FLOOR(2.5)
returns: 2

® FLOOR(-2.5)
returns: -3

® CEIL(2.5)
returns: 3

® CEIL(-2.5)
returns: -2

® ROUND(2.5)
returns: 3

® ROUND(3.5)
returns: 4

® ROUND(-2.5)
returns: -3

® RINT(2.5)
returns: 2

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

375

®* RINT(3.5)
returns: 4

®* RINT(-2.5)
returns: -2

® RINT(-3.5)
returns: -4

® TRUNC(2.5)
returns: 2

®* TRUNC(3.5)
returns: 3

® TRUNC(-3.5)
returns: -3

Of course, all of the above examples use constants, but would work the same if any of the numeric or string constants were replaced with a variable
reference ${CALLERID(num)}, for instance.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 376

Numbers Vs. Strings
Tokens consisting only of numbers are converted to 'long double’ if possible, which are from 80 bits to 128 bits depending on the OS, compiler, and

hardware. This means that overflows can occur when the numbers get above 18 digits (depending on the number of bits involved). Warnings will appear in
the logs in this case.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 377

Conditionals

There is one conditional application - the conditional goto :

exten => 1,2, Gotol f(condition?l abel 1: 1 abel 2)
If condition is true go to labell, else go to label2. Labels are interpreted exactly as in the normal goto command.

"condition" is just a string. If the string is empty or "0", the condition is considered to be false, if it's anything else, the condition is true. This is designed to
be used together with the expression syntax described above, eg :

exten => 1,2, Gotol f ($[S{CALLERI D(al |)} = 123456] ?2, 1: 3, 1)

Example of use :

exten => s, 2, Set (vara=1)

exten => s, 3, Set (var b=$[${vara} + 2])

exten => s, 4, Set (varc=$[${varb} * 2])

exten => s, 5, Cotol f ($[${varc} = 6] 7?99, 1:s, 6)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 378

Expression Parsing Errors

Syntax errors are now output with 3 lines.

If the extensions.conf file contains a line like:

exten => s,6, Gotol f($]["${CALLERI D(num)}" = "3071234567" & & "${CALLERI D(nane)}"
"Privacy Manager"]?callerid-liar,s,1:s,7)

You may see an error in /var/log/asterisk/messages like this:

Jul 15 21:27:49 WARNI NG 1251240752]: ast_yyerror(): syntax error: parse error, unexpected TOK_AND, expecting TOK_M
INUS or TOK_LP or TOKEN; | nput:
"3072312154" = "3071234567" & & "Steves Extension" : "Privacy Mnager"

A

The log line tells you that a syntax error was encountered. It now also tells you (in grand standard bison format) that it hit an "AND" (&) token unexpectedly,
and that was hoping for for a MINUS , LP (left parenthesis), or a plain token (a string or number).

The next line shows the evaluated expression, and the line after that, the position of the parser in the expression when it became confused, marked with
the "™ character.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 379

NULL Strings

Testing to see if a string is null can be done in one of two different ways:

exten => _XX.,1, Cotol f($["${calledid}" = ""]?3)
or:

exten => _XX., 1, Gotol f($[foo${calledid} != foo]?3)

The second example above is the way suggested by the WIKI. It will work as long as there are no spaces in the evaluated value.

The first way should work in all cases, and indeed, might now be the safest way to handle this situation.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 380

Warnings about Expressions
If you need to do complicated things with strings, asterisk expressions is most likely NOT the best way to go about it. AGI scripts are an excellent option to

this need, and make available the full power of whatever language you desire, be it Perl, C, C++, Cobol, RPG, Java, Snobol, PL/I, Scheme, Common Lisp,
Shell scripts, Tcl, Forth, Modula, Pascal, APL, assembler, etc.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 381

Expression Parser Incompatibilities

The asterisk expression parser has undergone some evolution. It is hoped that the changes will be viewed as positive.

The "original" expression parser had a simple, hand-written scanner, and a simple bison grammar. This was upgraded to a more involved bison grammar,
and a hand-written scanner upgraded to allow extra spaces, and to generate better error diagnostics. This upgrade required bison 1.85, and part of the
user community felt the pain of having to upgrade their bison version.

The next upgrade included new bison and flex input files, and the makefile was upgraded to detect current version of both flex and bison, conditionally
compiling and linking the new files if the versions of flex and bison would allow it.

If you have not touched your extensions.conf files in a year or so, the above upgrades may cause you some heartburn in certain circumstances, as several
changes have been made, and these will affect asterisk's behavior on legacy extension.conf constructs. The changes have been engineered to minimize
these conflicts, but there are bound to be problems.

The following list gives some (and most likely, not all) of areas of possible concern with "legacy" extension.conf files:

1. Tokens separated by space(s). Previously, tokens were separated by spaces. Thus, ' 1 + 1" would evaluate to the value '2', but '1+1'
would evaluate to the string '1+1". If this behavior was depended on, then the expression evaluation will break. '1+1' will now evaluate to
'2', and something is not going to work right. To keep such strings from being evaluated, simply wrap them in double quotes: ' "1+1""

2. The colon operator. In versions previous to double quoting, the colon operator takes the right hand string, and using it as a regex pattern,
looks for it in the left hand string. It is given an implicit dperator at the beginning, meaning the pattern will match only at the beginning of
the left hand string. If the pattern or the matching string had double quotes around them, these could get in the way of the pattern match.
Now, the wrapping double quotes are stripped from both the pattern and the left hand string before applying the pattern. This was done
because it recognized that the new way of scanning the expression doesn't use spaces to separate tokens, and the average regex
expression is full of operators that the scanner will recognize as expression operators. Thus, unless the pattern is wrapped in double
quotes, there will be trouble. For instance, ${VARL1} : (WhoWhat)+ may have have worked before, but unless you wrap the pattern in
double quotes now, look out for trouble! This is better: "${VAR1}" : "(WhoWhat*)+" and should work as previous.*

3. Variables and Double Quotes Before these changes, if a variable's value contained one or more double gquotes, it was no reason for
concern. It is now !

4. LE, GE, NE operators removed. The code supported these operators, but they were not documented. The symbolic operators, =, =, and
1= should be used instead.

5. Added the unary '-' operator. So you can 3+ -4 and get -1.

6. Added the unary 'I' operator, which is a logical complement. Basically, if the string or number is null, empty, or '0', a '1" is returned.
Otherwise a '0' is returned.

7. Added the '=~' operator, just in case someone is just looking for match anywhere in the string. The only diff with the " is that match
doesn't have to be anchored to the beginning of the string.

8. Added the conditional operator ‘exprl ? true_expr :: false_expr' First, all 3 exprs are evaluated, and if exprl is false, the ‘false_expr' is
returned as the result. See above for details.

9. Unary operators '-' and '!" were made right associative.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 382

Expression Debugging Hints

There are two utilities you can build to help debug the $[] in your extensions.conf file.

The first, and most simplistic, is to issue the command:

meke testexpr2

in the top level asterisk source directory. This will build a small executable, that is able to take the first command line argument, and run it thru the
expression parser. No variable substitutions will be performed. It might be safest to wrap the expression in single quotes...

testexpr2 '2*2+2/ 2

is an example.

And, in the utils directory, you can say:

meke check_expr

and a small program will be built, that will check the file mentioned in the first command line argument, for any expressions that might be have problems
when you move to flex-2.5.31. It was originally designed to help spot possible incompatibilities when moving from the pre-2.5.31 world to the upgraded
version of the lexer.

But one more capability has been added to check_expr, that might make it more generally useful. It now does a simple minded evaluation of all variables,
and then passes the $[] exprs to the parser. If there are any parse errors, they will be reported in the log file. You can use check_expr to do a quick sanity
check of the expressions in your extensions.conf file, to see if they pass a crude syntax check.

The "simple-minded" variable substitution replaces ${varname} variable references with '555'. You can override the 555 for variable values, by entering in
var=val arguments after the filename on the command line. So...

check_expr /etc/asterisk/extensions.conf CALLERI D(num =3075551212 DI ALSTATUS=TORTURE
EXTEN=121

will substitute any ${CALLERID(num)} variable references with 3075551212, any ${DIALSTATUS} variable references with TORTURE', and any ${EXTEN}
references with '121". If there is any fancy stuff going on in the reference, like ${EXTEN:2}, then the override will not work. Everything in the ${...} has to
match. So, to substitute ${EXTEN:2} references, you'd best say:

check_expr /etc/asterisk/extensions.conf CALLERI D(num =3075551212 DI ALSTATUS=TORTURE
EXTEN: 2=121

on stdout, you will see something like:

‘ OK — $["${DIALSTATUS}" = "TORTURE' | "${DI ALSTATUS}" = "DONTCALL"] at line 416 ‘

In the expr2_log file that is generated, you will see:

‘ line 416, evaluation of $["TORTURE' = "TORTURE" | "TORTURE' = "DONTCALL"] result: 1 ‘

check_expr is a very simplistic algorithm, and it is far from being guaranteed to work in all cases, but it is hoped that it will be useful.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 383

Asterisk Standard Channel Variables

There are a number of variables that are defined or read by Asterisk. Here is a listing of them. More information is available in each application's help text.
All these variables are in UPPER CASE only.

Variables marked with a * are builtin functions and can't be set, only read in the dialplan. Writes to such variables are silently ignored.

Variables present in Asterisk 1.8 and forward:

® ${CDR(accountcode)} * - Account code (if specified)

* ${BLINDTRANSFER} - The name of the channel on the other side of a blind transfer

* ${BRIDGEPEER} - Bridged peer

* ${BRIDGEPVTCALLID} - Bridged peer PVT call ID (SIP Call ID if a SIP call)

¢ ${CALLERID(ani)} * - Caller ANI (PRI channels)

® ${CALLERID(ani2)} * - ANI2 (Info digits) also called Originating line information or OLI

® ${CALLERID(all)} * - Caller ID

¢ ${CALLERID(dnid)} * - Dialed Number Identifier

® ${CALLERID(name)} * - Caller ID Name only

® ${CALLERID(num)} * - Caller ID Number only

® ${CALLERID(rdnis)} * - Redirected Dial Number ID Service

® ${CALLINGANI2} * - Caller ANI2 (PRI channels)

® ${CALLINGPRES} * - Caller ID presentation for incoming calls (PRI channels)

® ${CALLINGTNS} * - Transit Network Selector (PRI channels)

® ${CALLINGTON} * - Caller Type of Number (PRI channels)

® ${CHANNEL} * - Current channel name

® ${CONTEXT} * - Current context

* ${DATETIME} * - Current date time in the format: DDMMYYYY-HH:MM:SS (Deprecated; use
${STRFTIME(${EPOCH},,%d%m%Y-%H:%M:%S)})

* ${DB_RESULT} - Result value of DB_EXISTS() dial plan function

® ${EPOCH]} * - Current unix style epoch

® ${EXTEN} * - Current extension

* ${ENV(VAR)} - Environmental variable VAR

* ${GOTO_ON_BLINDXFR} - Transfer to the specified context/extension/priority after a blind transfer (use ” characters in place of | to
separate context/extension/priority when setting this variable from the dialplan)

* ${HANGUPCAUSE} * - Asterisk cause of hangup (inbound/outbound)

® ${HINT} * - Channel hints for this extension

* ${HINTNAME} * - Suggested Caller*ID name for this extension

® ${INVALID_EXTEN} - The invalid called extension (used in the "i" extension)

* ${LANGUAGE]} * - Current language (Deprecated; use ${LANGUAGE()})

* ${LEN(VAR)} - String length of VAR (integer)

* ${PRIORITY} * - Current priority in the dialplan

* ${PRIREDIRECTREASON} - Reason for redirect on PRI, if a call was directed

* ${TIMESTAMP} * - Current date time in the format: YYYYMMDD-HHMMSS (Deprecated; use
${STRFTIME(${EPOCH},,%Y%m%d-%H%M%S)})

* ${TRANSFER_CONTEXT} - Context for transferred calls

* ${FORWARD_CONTEXT} - Context for forwarded calls

* ${DYNAMIC_PEERNAME} - The name of the channel on the other side when a dynamic feature is used.

* ${DYNAMIC_FEATURENAME} The name of the last triggered dynamic feature.

® ${UNIQUEID} * - Current call unique identifier

* ${SYSTEMNAME} * - value of the systemname option of asterisk.conf

* ${ENTITYID} * - Global Entity ID set automatically, or from asterisk.conf

Variables present in Asterisk 11 and forward:

* ${AGIEXITONHANGUP} - set to 1 to force the behavior of a call to AGI to behave as it did in 1.4, where the AGI script would exit
immediately on detecting a channel hangup

® ${CALENDAR_SUCCESS]} * - Status of the CALENDAR_WRITE function. Set to 1 if the function completed successfully; O otherwise.

® ${SIP_RECVADDR} * - the address a SIP MESSAGE request was received from

* ${VOICEMAIL_PLAYBACKSTATUS} * - Status of the VoiceMailPlayMsg application. SUCCESS if the voicemail was played back
successfully, {{FAILED} otherwise

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 384

https://wiki/display/AST/Asterisk+11+Function_CALENDAR_WRITE
https://wiki/display/AST/Asterisk+11+Application_VoiceMailPlayMsg

Application return values

Many applications return the result in a variable that you read to get the result of the application. These status fields are unique for each application. For the
various status values, see each application's help text.

* ${AGISTATUS} * agi()

* ${AQMSTATUS} * addqueuemember()

® ${AVAILSTATUS} * chanisavail()

* ${CHECKGROUPSTATUS} * checkgroup()
* ${CHECKMD5STATUS} * checkmd5()

® ${CPLAYBACKSTATUS} * controlplayback()
* ${DIALSTATUS} * dial()

* ${DBGETSTATUS} * dbget()

* ${ENUMSTATUS} * enumlookup()

* ${HASVMSTATUS} * hasnewvoicemail()

* ${LOOKUPBLSTATUS} * lookupblacklist()

* ${OSPAUTHSTATUS]} * ospauth()

* ${OSPLOOKUPSTATUS} * osplookup()

® ${OSPNEXTSTATUS} * ospnext()

* ${OSPFINISHSTATUS} * ospfinish()

* ${PARKEDAT} * parkandannounce()

* ${PLAYBACKSTATUS} * playback()

* ${PQMSTATUS} * pausequeuemember()

* ${PRIVACYMGRSTATUS} * privacymanager()
* ${QUEUESTATUS} * queue()

* ${RQMSTATUS} * removequeuemember()
* ${SENDIMAGESTATUS} * sendimage()

* ${SENDTEXTSTATUS} * sendtext()

® ${SENDURLSTATUS} * sendurl()

* ${SYSTEMSTATUS]} * system()

* ${TRANSFERSTATUS} * transfer()

® ${TXTCIDNAMESTATUS} * txtcidname()

* ${UPQMSTATUS} * unpausequeuemember()
® ${VMSTATUS} * voicmail()

* ${VMBOXEXISTSSTATUS} * vmboxexists()
* ${WAITSTATUS} * waitforsilence()

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 385

Various application variables

® ${ CURL} - Resulting page content for CURL()

* ${ ENUM - Result of application EnunLookup()

* ${ EXI TCONTEXT} - Context to exit to in IVR menu (Backgr ound()) or in the Ret ryDi al () application

* ${ MONI TOR} - Set to "TRUE" if the channel is/has been monitored (app monitor())

* ${ MONI TOR_EXEC} - Application to execute after monitoring a call

* ${ MONI TOR_EXEC_ARGS} - Arguments to application

* ${ MONI TOR_FI LENANE} - File for monitoring (recording) calls in queue

* ${ QUEUE_PRI O - Queue priority

* ${ QUEUE_MAX_PENALTY} - Maximum member penalty allowed to answer caller

* ${ QUEUE_M N_PENALTY} - Minimum member penalty allowed to answer caller

* ${ QUEUESTATUS} - Status of the call, one of: (TIMEOUT | FULL | JOINEMPTY | LEAVEEMPTY | JOINUNAVAIL | LEAVEUNAVAIL)

* ${ QUEUEPCSI TI ON} - When a caller is removed from a queue, his current position is logged in this variable. If the value is 0, then this
means that the caller was serviced by a queue member. If non-zero, then this was the position in the queue the caller was in when he
left.

® ${ RECORDED_FI LE} - Recorded file in record()

® ${ TALK_DETECTED} - Result from talkdetect()

® ${ TOUCH MONI TOR} - The filename base to use with Touch Monitor (auto record)

® ${ TOUCH MONI TOR_PREF} - The prefix for automonitor recording filenames.

® ${ TOUCH _MONI TOR_FORVAT} - The audio format to use with Touch Monitor (auto record)

® ${ TOUCH_MONI TOR_QUTPUT} - Recorded file from Touch Monitor (auto record)

® ${ TOUCH MONI TOR_MESSAGE_START} - Recorded file to play for both channels at start of monitoring session

® ${ TOUCH MONI TOR_MESSAGE_STOPR} - Recorded file to play for both channels at end of monitoring session

® ${ TOUCH M XMONI TOR} - The filename base to use with Touch MixMonitor (auto record)

® ${ TOUCH M XMONI TOR_FORMAT} - The audio format to use with Touch MixMonitor (auto record)

® ${ TOUCH M XMONI TOR_OUTPUT} - Recorded file from Touch MixMonitor (auto record)

® ${ TXTClI DNAVE} - Result of application TXTCIDName

* ${VPB_GETDTM} - chan_vpb

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 386

MeetMe Channel Variables

* ${MEETME_RECORDINGFILE} - Name of file for recording a conference with the "r" option

* ${MEETME_RECORDINGFORMAT} - Format of file to be recorded

* ${MEETME_EXIT_CONTEXT} - Context for exit out of meetme meeting

* ${MEETME_AGI_BACKGROUND} - AGI script for Meetme (DAHDI only)

* ${MEETMESECS} * - Number of seconds a user participated in a MeetMe conference

®* ${CONF_LIMIT_TIMEOUT_FILE} - File to play when time is up. Used with the L() option.

* ${CONF_LIMIT_WARNING_FILE} - File to play as warning if 'y" is defined. The default is to say the time remaining. Used with the L()
option.

* ${MEETMEBOOKID} * - This variable exposes the bookid column for a realtime configured conference bridge.

* ${MEETME_EXIT_KEY} - DTMF key that will allow a user to leave a conference

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 387

VoiceMail Channel Variables

* ${VM_CATEGORY} - Sets voicemail category

* ${VM_NAME} * - Full name in voicemail

* ${VM_DUR} * - Voicemail duration

* ${VM_MSGNUM} * - Number of voicemail message in mailbox
* ${VM_CALLERID} * - Voicemail Caller ID (Person leaving vm)
* ${VM_CIDNAME} * - Voicemail Caller ID Name

* ${VM_CIDNUM} * - Voicemail Caller ID Number

* ${VM_DATE} * - Voicemail Date

* ${VM_MESSAGEFILE} * - Path to message left by caller

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 388

VMAuUthenticate Channel Variables

* ${AUTH_MAILBOX} * - Authenticated mailbox
®* ${AUTH_CONTEXT} * - Authenticated mailbox context

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 389

DUNDiLookup Channel Variables

* ${DUNDTECH} * - The Technology of the result from a call to DUNDiLookup()
* ${DUNDDEST} * - The Destination of the result from a call to DUNDiLookup()

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 390

chan_dahdi Channel Variables

® ${ANI2} * - The ANI2 Code provided by the network on the incoming call. (ie, Code 29 identifies call as a Prison/Inmate Call)

® ${CALLTYPE} * - Type of call (Speech, Digital, etc)

® ${CALLEDTON} * - Type of number for incoming PRI extension i.e. 0O=unknown, 1=international, 2=domestic, 3=net_specific,
4=subscriber, 6=abbreviated, 7=reserved

® ${CALLINGSUBADDR} * - Caller's PRI Subaddress

* ${FAXEXTEN} * - The extension called before being redirected to "fax"

* ${PRIREDIRECTREASON} * - Reason for redirect, if a call was directed

* ${SMDI_VM_TYPE} * - When an call is received with an SMDI message, the 'type' of message 'b' or 'u’

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 391

chan_sip Channel Variables

® ${SIPCALLID} * - SIP Call-ID: header verbatim (for logging or CDR matching)

* ${SIPDOMAIN} * - SIP destination domain of an inbound call (if appropriate)

* ${SIPFROMDOMAIN} - Set SIP domain on outbound calls

* ${SIPUSERAGENT} * - SIP user agent (deprecated)

* ${SIPURI} * - SIP uri

* ${SIP_MAX_FORWARDS} - Set the value of the Max-Forwards header for outbound call
® ${SIP_CODEC} - Set the SIP codec for an inbound call

® ${SIP_CODEC_INBOUNDY} - Set the SIP codec for an inbound call

® 3${SIP_CODEC_OUTBOUND} - Set the SIP codec for an outbound call

* ${SIP_URI_OPTIONS} * - additional options to add to the URI for an outgoing call
* ${RTPAUDIOQOS} - RTCP QoS report for the audio of this call

* ${RTPVIDEOQOS} - RTCP QoS report for the video of this call

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 392

chan_agent Channel Variables

* ${AGENTMAXLOGINTRIES} - Set the maximum number of failed logins

* ${AGENTUPDATECDR} - Whether to update the CDR record with Agent channel data
* ${AGENTGOODBYE} - Sound file to use for "Good Bye" when agent logs out

* ${AGENTACKCALL} - Whether the agent should acknowledge the incoming call

* ${AGENTAUTOLOGOFF} - Auto logging off for an agent

* ${AGENTWRAPUPTIME} - Setting the time for wrapup between incoming calls

* ${AGENTNUMBER} * - Agent number (username) set at login

* ${AGENTSTATUS} * - Status of login (fail | on | off)

* ${AGENTEXTEN} * - Extension for logged in agent

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 393

Dial Channel Variables

* ${DIALEDPEERNAME]} * - Dialed peer name

¢ ${DIALEDPEERNUMBERY} * - Dialed peer number

* ${DIALEDTIME} * - Time for the call (seconds). Is only set if call was answered.

* ${ANSWEREDTIME} * - Time from answer to hangup (seconds)

* ${DIALSTATUS} * - Status of the call, one of: (CHANUNAVAIL | CONGESTION | BUSY | NOANSWER | ANSWER | CANCEL |
DONTCALL | TORTURE)

* ${DYNAMIC_FEATURES} * - The list of features (from the applicationmap section of features.conf) to activate during the call, with
feature names separated by '#' characters

® ${LIMIT_PLAYAUDIO_CALLER} - Soundfile for call limits

* ${LIMIT_PLAYAUDIO_CALLEE} - Soundfile for call limits

® ${LIMIT_WARNING_FILE} - Soundfile for call limits

® ${LIMIT_TIMEOUT_FILE} - Soundfile for call limits

® ${LIMIT_CONNECT_FILE} - Soundfile for call limits

* ${OUTBOUND_GROUP} - Default groups for peer channels (as in SetGroup) * See "show application dial" for more information

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 394

https://wiki/pages/createpage.action?spaceKey=AST&title=applicationmap&linkCreation=true&fromPageId=4620432

Chanisavail() Channel Variables

® ${AVAILCHAN} * - the name of the available channel if one was found
* ${AVAILORIGCHAN} * - the canonical channel name that was used to create the channel
* ${AVAILSTATUS} * - Status of requested channel

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 395

Dialplan Macros Channel Variables

* ${MACRO_EXTEN} * - The calling extensions
* ${MACRO_CONTEXT} * - The calling context
* ${MACRO_PRIORITY} * - The calling priority
* ${MACRO_OFFSET} - Offset to add to priority at return from macro

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 396

ChanSpy Channel Variables

* ${SPYGROUP} * - A"’ (colon) separated list of group names. (To be set on spied on channel and matched against the g(grp) option)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 397

Open Settlement Protocol (OSP) Channel Variables

® ${OSPINHANDLE} - The inbound call OSP transaction handle.

® ${OSPINTOKEN} - The inbound OSP token.

® ${OSPINTIMELIMIT} - The inbound call duration limit in seconds.

* ${OSPINPEERIP} - The last hop IP address.

* ${OSPINNETWORKID} - The inbound source network ID.

® ${OSPINNPRN} - The inbound routing number.

® ${OSPINNPCIC} - The inbound carrier identification code.

* ${OSPINNPDI} - The inbound number portability database dip indicator.
® ${OSPINSPID} - The inbound service provider identity.

® ${OSPINOCN} - The inbound operator company number.

® ${OSPINSPN} - The inbound service provider name.

® ${OSPINALTSPN} - The inbound alternate service provider name.

® ${OSPINMCC} - The inbound mobile country code.

® ${OSPINMNC} - The inbound mobile network code.

* ${OSPINDIVUSER} - The inbound Diversion header user part.

® ${OSPINDIVHOST} - The inbound Diversion header host part.

® ${OSPINTOHOST} - The inbound To header host part.

* ${OSPINCUSTOMINFON} - The inbound custom information. Where n is the index beginning with 1 upto 8.
® ${OSPOUTHANDLE} - The outbound call OSP transaction handle.

* ${OSPOUTTOKEN} - The outbound OSP token.

® ${OSPOUTTIMELIMIT} - The outbound call duration limit in seconds.
* ${OSPOUTTECH]} - The outbound channel technology.

* ${OSPOUTCALLIDTYPES} - The outbound Call-ID types.

® ${OSPOUTCALLID} - The outbound Call-ID. Only for H.323.

* ${OSPDESTINATION} - The destination IP address.

* ${OSPDESTREMAILS} - The number of remained destinations.

® ${OSPOUTCALLING} - The outbound calling number.

* ${OSPOUTCALLED} - The outbound called number.

* ${OSPOUTNETWORKID} - The outbound destination network ID.

* ${OSPOUTNPRN} - The outbound routing number.

® ${OSPOUTNPCIC} - The outbound carrier identification code.

* ${OSPOUTNPDI} - The outbound number portability database dip indicator.
® ${OSPOUTSPID} - The outbound service provider identity.

® ${OSPOUTOCN} - The outbound operator company number.

® ${OSPOUTSPN} - The outbound service provider name.

®* ${OSPOUTALTSPN} - The outbound alternate service provider name.
® ${OSPOUTMCC} - The outbound mobile country code.

* ${OSPOUTMNC} - The outbound mobile network code.

* ${OSPDIALSTR} - The outbound Dial command string.

* ${OSPINAUDIOQOS} - The inbound call leg audio QoS string.

* ${OSPOUTAUDIOQOS]} - The outbound call leg audio QoS string.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 398

Digit Manipulation Channel Variables

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

${ REDI RECTI NG_CALLEE_SEND_MACRG
Macro to call before sending a redirecting update to the callee

${ REDI RECTI NG CALLEE_SEND MACRO ARGS}
Arguments to pass to ${REDIRECTING_CALLEE_SEND_MACRO}

${ REDI RECTI NG_CALLER_SEND_MACRG
Macro to call before sending a redirecting update to the caller

${ REDI RECTI NG_CALLER_SEND_MACRO_ARGS}
Arguments to pass to ${REDIRECTING_CALLER_SEND_MACRO}
${ CONNECTED_L| NE_CALLEE_SEND MACRG}

Macro to call before sending a connected line update to the callee

${ CONNECTED LI NE_CALLEE_SEND MACRO_ARGS}
Arguments to pass to ${CONNECTED_LINE_CALLEE_SEND_MACRO}

${ CONNECTED _LI NE_CALLER_SEND_MACRG
Macro to call before sending a connected line update to the caller

${ CONNECTED_L| NE_CALLER_SEND_MACRO_ARGS}
Arguments to pass to $§{CONNECTED_LINE_CALLER_SEND_MACRO}

399

Case Sensitivity

Case sensitivity of channel variables in Asterisk is dependent on the version of Asterisk in use.

Versions prior to Asterisk 12
This includes versions

® Asterisk 1.0.X
® Asterisk 1.2.X
® Asterisk 1.4.X
® Asterisk 1.6.0.X
® Asterisk 1.6.1.X
® Asterisk 1.6.2.X
® Asterisk 1.8.X
® Asterisk 10.X
® Asterisk 11.X

These versions of Asterisk follow these three rules:

® Variables evaluated in the dialplan are case-insensitive
® Variables evaluated within Asterisk's internals are case-sensitive
® Built-in variables are case-sensitive

This is best illustrated through the following examples

Example 1: A user-set variable

In this example, the user retrieves a value from the AstDB and then uses it as the destination for a Di al command.

[defaul t]
exten => 1000, 1, Set (DEST=${ DB(egg/ sal ad) })
sane => n, Di al (${ DEST}, 15)

Since the DEST variable is set and evaluated in the dialplan, its evaluation is case-insensitive. Thus the following would be equivalent:

exten => 1000, 1, Set (DEST=${ DB(egg/ sal ad) })
sane => n, Di al (${dest}, 15)

As would this:

exten => 1000, 1, Set (DeSt =${ DB(egg/ sal ad) })
same => n, D al (${dEsT}, 15)

Example 2: Using a built-in variable

In this example, the user wishes to use a built-in variable in order to determine the destination for a call.

‘ exten => _X., 1, Dial (SI P/ ${ EXTEN}) ‘

Since the variable EXTEN is a built-in variable, the following would not be equivalent:

‘ exten => _X., 1,Dial (SI P/ ${exten}) ‘

The lowercase ext en variable would evaluate to an empty string since no previous value was set for ext en.

Example 3: A variable used internally by Asterisk

In this example, the user wishes to suggest to the SIP channel driver what codec to use on the call.

exten => 1000, Set (S| P_CODEC=g729)
sane => n, Di al (SI P/ 1000, 15)

S| P_CODEC s set in the dialplan, but it gets evaluated inside of Asterisk, so the evaluation is case-sensitive. Thus the following dialplan would not be
equivalent:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 400

exten => 1000, Set (si p_codec=g729)
sane => n, Di al (SI P/ 1000, 15)

This can lead to some rather confusing situations. Consider that a user wrote the following dialplan. He intended to set the variable SI P_CODEC but instead
made a typo:

exten => 1000, Set (S| P_CODEc=g729)
sane => n, D al (SI P/ 1000, 15)

As has already been discussed, this is not equivalent to using SI P_CODEC. The user looks over his dialplan and does not notice the typo. As a way of
debugging, he decides to place a NoOp in the dialplan:

exten => 1000, Set (SI P_CODEc=g729)
sane => n, NoOp(${ SI P_CODEC})
same => n, Di al (SI P/ 1000, 15)

When the user checks the verbose logs, he sees that the second priority has evaluated SI P_CODEC to be "g729". This is because the evaluation in the

dialplan was done case-insensitively.

Asterisk 12 and above

Due to potential confusion stemming from the policy, for Asterisk 12, it was proposed that variables should be evaluated consistently. E-mails were sent to
the Asterisk-developers and Asterisk-users lists about whether variables should be evaluated case-sensitively or case-insensitively. The majority opinion
swayed towards case-sensitive evaluation. Thus in Asterisk 12, all variable evaluation, whether done in the dialplan or internally, will be case-sensitive.

For those who are upgrading to Asterisk 12 from a previous version, be absolutely sure that your variables are used consistently throughout your dialplan.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 401

http://lists.digium.com/pipermail/asterisk-dev/2012-October/057056.html
http://lists.digium.com/pipermail/asterisk-users/2012-October/275033.html

Distributed Universal Number Discovery (DUNDI)

Top-level page for all things DUNDi

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 402

Introduction to DUNDI

http://www.dundi.com
Mark Spencer, Digium, Inc.

DUND:I is essentially a trusted, peer-to-peer system for being able to call any phone number from the Internet. DUNDi works by creating a network of nodes
called the "DUNDI E.164 Trust Group" which are bound by a common peering agreement known as the General Peering Agreement or GPA. The GPA
legally binds the members of the Trust Group to provide good-faith accurate information to the other nodes on the network, and provides standards by
which the community can insure the integrity of the information on the nodes themselves. Unlike ENUM or similar systems, DUNDi is explicitly designed to
preclude any necessity for a single centralized system which could be a source of fees, regulation, etc.

Much less dramatically, DUNDi can also be used within a private enterprise to share a dialplan efficiently between multiple nodes, without incurring a risk of
a single point of failure. In this way, administrators can locally add extensions which become immediately available to the other nodes in the system.

For more information visit http://www.dundi.com

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 403

http://www.dundi.com
http://www.dundi.com

DUNDIQUERY and DUNDIRESULT

The DUNDIQUERY and DUNDIRESULT dialplan functions will let you initiate a DUNDi query from the dialplan, see how many results there are, and
access each one. Here is some example usage:

exten => 1,1, Set (1 D=${ DUNDI QUERY(1, dundi _test, b)})
exten => 1, n, Set (NUM=${ DUNDI RESULT(${! D}, get num })
exten => 1,n, NoQp(There are ${NUM results)
exten => 1, n, Set (X=1)
exten => 1,n, While($[${X} <= ${NUM])
exten => 1,n, NoOp(Result ${X} is ${DUNDI RESULT(${I D}, ${X})})
exten => 1,n, Set (X=$[${X} + 1])
1

exten => 1, n, EndWile

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 404

DUNDiI Peering Agreement

DI G UM GENERAL PEERI NG AGREEMENT (TM

Version 1.0.0, Septenber 2004

Copyright (C) 2004 Digium Inc.

150 West Park Loop Suite 100, Huntsville, AL 35806 USA

Everyone is pernmitted to copy and distribute conplete verbatimcopies of this General Peering Agreenent provided it is not
nodi fied in any nanner.

DI G UM GENERAL PEERI NG AGREEMENT
PREAMBLE

For nost of the history of tel ecommunications, the power of being able to |ocate and communicate with another person in a system
be it across a hall or around the world, has always centered around a centralized authority -- froma |local PBX administrator to
regional and national RBOCs, generally requiring fees, taxes or regulation. By contrast, DUNDi is a technol ogy devel oped to
provide users the freedomto comunicate with each other w thout the necessity of any centralized authority. This General Peering
Agreenent ("GPA") is used by individual parties (each, a "Participant"”) to allow themto build the E164 trust group for the DUNDi
protocol .

To protect the useful ness of the E164 trust group for those who use it, while keeping the systemwholly decentralized, it is
necessary to replace many of the responsibilities generally afforded to a conpany or governnent agency, with a set of
responsibilities inplenented by the parties who use the system thenselves. It is the goal of this docunent to provide all the
protections necessary to keep the DUNDi E164 trust group useful and reliable.

The Participants wish to protect conpetition, pronote innovation and val ue added services and nake this service val uable both
comercially and non-comercially. To that end, this GPA provides special terms and conditions outlining some pernissible and
non- perni ssi bl e revenue sources.

This GPA is independent of any software |icense or other |icense agreenent for a program or technol ogy enpl oying the DUNDi
protocol. For exanple, the inplenentation of DUNDi used by Asterisk is covered under a separate |icense. Each Participant is
responsi bl e for conpliance with any |icenses or other agreenents governing use of such programor technology that they use to
peer.

You do not have to execute this GPA to use a program or technol ogy enploying the DUNDi protocol, however if you do not execute
this GPA, you will not be able to peer using DUNDi and the E164 context with anyone who is a nenber of the trust group by virtue
of their having executed this GPA with another nenber.

The parties to this GPA agree as follows:

0. DEFINITIONS. As used herein, certain terns shall be defined as
foll ows:

(a) The term"DUNDi " neans the DUNDi protocol as published by Digium Inc. or its successor in interest with respect to the DUNDi
protocol specification.

(b) The terns "E. 164" and "E164" nean | TU-T specification E. 164 as published by the International Tel ecomunications Union (ITU)
in My, 1997.

(c) The term "Service" refers to any comunication facility (e.g., telephone, fax, nodem etc.), identified by an
E. 164- conpati bl e number, and assigned by the appropriate authority in that jurisdiction.

(d) The term "Egress Gateway" refers an Internet facility that provides a communications path to a Service or Services that may
not be directly addressable via the Internet.

(e) The term"Route" refers to an Internet address, policies, and other characteristics defined by the DUNDi protocol and
associated with the Service, or the Egress Gateway which provides access to the specified Service.

(f) The term "Propagate" means to accept or transmit Service and/or Egress Gateway Routes only using the DUNDi protocol and the
DUNDi context "el64" without regard to case, and does not apply to the exchange of infornmation using any other protocol or

cont ext .

(g) The term "Peering Systen nmeans the network of systenms that Propagate Routes.

(h) The term "Subscriber" neans the owner of, or someone who contracts to receive, the services identified by an E. 164 nunber.

(i) The term "Authorizing Individual" neans the Subscriber to a nunber who has authorized a Participant to provide Routes
regarding their services via this Peering System

(j) The term "Route Authority" refers to a Participant that provides an original source of said Route within the Peering System
Rout es are propagated fromthe Route Authorities through the Peering Systemand nay be cached at internediate points. There may
be nultiple Route Authorities for any Service.

(k) The term "Participant” (introduced above) refers to any nenber of the Peering System

(I') The term "Service Provider" refers to the carrier (e.g., exchange carrier, Internet Tel ephony Service Provider, or other
reseller) that provides comunication facilities for a particular Service to a Subscriber, Custonmer or other End User.

(m The term"Weight" refers to a nuneric quality assigned to a Route as per the DUNDi protocol specification. The current Weight
definitions are shown in Exhibit A

1. PEERING The undersigned Participants agree to Propagate Routes with each other and any other menber of the Peering System and
further agree not to Propagate DUNDIi Routes with a third party unless they have first have executed this GPA (in its unnodified
form) with such third party. The Participants further agree only to Propagate Routes with Participants whomthey reasonably

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 405

bel i eve to be honoring the terns of the GPA. Participants may not insert, renove, anend, or otherw se nodify any of the terns of
the GPA

2. ACCEPTABLE USE POLICY. The DUNDi protocol contains information that reflect a Subscriber's or Egress Gateway's decisions to
receive calls. In addition to the terns and conditions set forth in this GPA the Participants agree to honor the intent of
restrictions encoded in the DUNDi protocol. To that end, Participants agree to the follow ng:

(a) A Participant may not utilize or permt the utilization of Routes for which the Subscriber or Egress Gateway provider has
indicated that they do not wish to receive "Unsolicited Calls" for the purpose of making an unsolicited phone call on behal f of
any party or organization.

(b) A Participant may not utilize or permt the utilization of Routes which have indicated that they do not w sh to receive
"Unsolicited Comrercial Calls" for the purpose of making an unsolicited phone call on behalf of a commercial organization.

(c) A Participant may never utilize or permt the utilization of any DUNDi route for the purpose of making harassing phone calls.

(d) A Party may not utilize or permt the utilization of DUNDi provided Routes for any systematic or random calling of nunbers
(e.g., for the purpose of locating facsimle, nodem services, or systematic telenarketing).

(e) Initial control signaling for all communication sessions that utilize Routes obtained fromthe Peering System nust be sent
froma nenber of the Peering Systemto the Service or Egress Gateway identified in the sel ected Route. For exanple, 'SIP INVITES
and | AX2 "NEW commands nust be sent fromthe requesting DUNDi node to the term nating Service.

(f) A Participant may not disclose any specific Route, Service or Participant contact information obtained fromthe Peering
Systemto any party outside of the Peering System except as a by-product of facilitating communication in accordance with section
2e (e.g., phone books or other databases may not be published, but the Internet addresses of the Egress Gateway or Service does
not need to be obfuscated.)

(g) The DUNDi Protocol requires that each Participant include valid contact information about itself (including information about
nodes connected to each Participant). Participants may use or disclose the contact information only to ensure enforcenent of
legal furtherance of this Agreenent.

3. ROUTES. The Participants shall only propagate valid Routes, as defined herein, through the Peering System regardless of the
original source. The Participants nay only provide Routes as set forth below, and then only if such Participant has no good faith
reason to believe such Route to be invalid or unauthorized.

(a) A Participant may provide Routes if each Route has as its original source another nenber of the Peering System who has duly
executed the GPA and such Routes are provided in accordance with this Agreenent; provided that the Routes are not nodified (e.g.,
with regards to existence, destination, technology or Wight); or

(b) A Participant may provide Routes for Services with any Weight for which it is the Subscriber; or

(c) A Participant may provide Routes for those Services whose Subscriber has authorized the Participant to do so, provided that
the Participant is able to confirmthat the Authorizing Individual is the Subscriber through:

i. awitten statenment of ownership fromthe Authorizing Individual, which the Participant believes in good faith to be accurate
(e.g., a phone bill with the nane of the Authorizing Individual and the number in question); or

ii. the Participant's own direct personal know edge that the Authorizing Individual is the Subscriber.

(d) A Participant may provide Routes for Services, with Wight in accordance with the Current DUNDi Specification, if it canin
good faith provide an Egress Gateway to that Service on the traditional telephone network w thout cost to the calling party.

4. REVOCATION. A Participant nust provide a free, easily accessible nmechani smby which a Subscriber may revoke perm ssion to act
as a Route Authority for his Service. A Participant nust stop acting as a Route Authority for that Service within 7 days after:

(a) receipt of a revocation request;
(b) receiving other notice that the Service is no |onger valid; or

(c) determination that the Subscriber's information is no |onger accurate (including that the Subscriber is no |onger the service
owner or the service owner's authorized del egate).

5. SERVICE FEES. A Participant may charge a fee to act as a Route Authority for a Service, with any Weight, provided that no
Participant may charge a fee to propagate the Route received through the Peering System

6. TOLL SERVICES. No Participant may provide Routes for any Services that require paynment fromthe calling party or their
custoner for communication with the Service. Nothing in this section shall prohibit a Participant fromproviding routes for
Services where the calling party nay later enter into a financial transaction with the called party (e.g., a Participant nay
provide Routes for calling cards services).

7. QUALITY. A Participant may not intentionally inpair communication using a Route provided to the Peering System (e.g. by adding
del ay, advertisements, reduced quality). If for any reason a Participant is unable to deliver a call via a Route provided to the
Peering System that Participant shall return out-of-band Network Congestion notification (e.g. "503 Service Unavailable" with
SIP protocol or "CONGESTION' with I AX protocol).

8. PROTOCOL COWPLI ANCE. Participants agree to Propagate Routes in strict conpliance with current DUNDi protocol specifications.

9. ADM NI STRATI VE FEES. A Participant may charge (but is not required to charge) another Participant a reasonable fee to cover
adnmi ni strative expenses incurred in the execution of this Agreement. A Participant may not charge any fee to continue the
rel ationship or to provide Routes to another Participant in the Peering System

10. CALLER I DENTIFI CATION. A Participant will nmake a good faith effort to ensure the accuracy and appropriate nature of any
caller identification that it transmits via any Route obtained fromthe Peering System Caller identification shall at |east be
provided as a valid E. 164 nunber.

11. COWPLIANCE W TH LAWS. The Participants are solely responsible for deternmining to what extent, if any, the obligations set
forth in this GPA conflict with any laws or regulations their region. A Participant may not provide any service or otherw se use
DUNDi under this GPA if doing so is prohibited by |law or regulation, or if any |aw or regul ation inposes requirenents on the

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 406

Participant that are inconsistent with the terms of this GPA or the Acceptable Use Policy.

12. WARRANTY. EACH PARTI Cl PANT WARRANTS TO THE OTHER PARTI Cl PANTS THAT | T MADE, AND W LL CONTINUE TO MAKE, A GOOD FAI TH EFFORT TO
AUTHENTI CATE OTHERS | N THE PEERI NG SYSTEM AND TO PROVI DE ACCURATE | NFORVATI ON | N ACCORDANCE W TH THE TERVMS OF THIS GPA. THI S
WARRANTY | S MADE BETWEEN THE PARTI Cl PANTS, AND THE PARTI Cl PANTS MAY NOT EXTEND THI S WARRANTY TO ANY NON- PARTI CI PANT | NCLUDI NG
END- USERS.

13. DI SCLAI MER OF WARRANTI ES. THE PARTI Cl PANTS UNDERSTAND AND AGREE THAT ANY SERVI CE PROVIDED AS A RESULT OF THIS GPA IS "AS IS. "
EXCEPT FOR THOSE WARRANTI ES OTHERW SE EXPRESSLY SET FORTH HEREI N, THE PARTI Cl PANTS DI SCLAI M ANY REPRESENTATI ONS OR WARRANTI ES OF
ANY KIND OR NATURE, EXPRESS OR | MPLI ED, AS TO THE CONDI TI ON, VALUE OR QUALI TI ES OF THE SERVI CES PROVI DED HEREUNDER, AND

SPECI FI CALLY DI SCLAI M ANY REPRESENTATI ON OR WARRANTY OF MERCHANTABI LI TY, SUI TABILITY OR FI TNESS FOR A PARTI CULAR PURPCSE OR AS TO
THE CONDI TI ON OR WORKMANSHI P THERECF, OR THE ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT, | NCLUDI NG ANY WARRANTI ES
ARI SI NG FROM A COURSE OF DEALI NG, USAGE OR TRADE PRACTI CE. EXCEPT AS EXPRESSLY PROVI DED HEREI N, THE PARTI Cl PANTS EXPRESSLY

DI SCLAI M ANY REPRESENTATI ONS OR WARRANTI ES THAT THE PEERI NG SERVI CE W LL BE CONTI NUCUS, UNI NTERRUPTED OR ERROR- FREE, THAT ANY
DATA SHARED OR OTHERW SE MADE AVAI LABLE W LL BE ACCURATE OR COWPLETE OR OTHERW SE COWPLETELY SECURE FROM UNAUTHORI ZED ACCESS.

14. LIMTATION OF LIABILITIES. NO PARTICI PANT SHALL BE LI ABLE TO ANY OTHER PARTI Cl PANT FOR | NCI DENTAL, | NDI RECT, CONSEQUENTI AL,
SPECI AL, PUNITI VE OR EXEMPLARY DAMAGES OF ANY KIND (I NCLUDI NG LOST REVENUES OR PROFI TS, LOSS OF BUSI NESS OR LOSS OF DATA) I N ANY
WAY RELATED TO THI S GPA, WHETHER | N CONTRACT OR I N TORT, REGARDLESS OF WHETHER SUCH PARTI Cl PANT WAS ADVI SED OF THE PGCSSI BI LI TY
THERECF.

15. END- USER AGREEMENTS. The Participants nay independently enter into agreements with end-users to provide certain services
(e.g., fees to a Subscriber to originate Routes for that Service). To the extent that provision of these services enploys the
Peering System the Parties will include in their agreements with their end-users terns and conditions consistent with the terns
of this GPA with respect to the exclusion of warranties, limtation of liability and Acceptable Use Policy. In no event may a
Participant extend the warranty described in Section 12 in this GPA to any end-users.

16. | NDEMNI FI CATI ON. Each Participant agrees to defend, indemify and hold harnml ess the other Participant or third-party
beneficiaries to this GPA (including their affiliates, successors, assigns, agents and representatives and their respective
officers, directors and enpl oyees) fromand against any and all actions, suits, proceedings, investigations, denands, clains,
judgnments, liabilities, obligations, |liens, |osses, danmges, expenses (including, without |imtation, attorneys' fees) and any
other fees arising out of or relating to (i) personal injury or property danage caused by that Participant, its enployees,
agents, servants, or other representatives; (ii) any act or omission by the Participant, its enployees, agents, servants or other
representatives, including, but not linmted to, unauthorized representations or warranties made by the Participant; or (iii) any
breach by the Participant of any of the terns or conditions of this GPA

17. THI RD PARTY BENEFICI ARIES. This GPA is intended to benefit those Participants who have executed the GPA and who are in the
Peering System It is the intent of the Parties to this GPA to give to those Participants who are in the Peering System standi ng
to bring any necessary legal action to enforce the terms of this GPA

18. TERM NATION. Any Participant nay terminate this GPA at any time, with or without cause. A Participant that term nates nust
imedi ately cease to Propagate.

19. CHO CE OF LAW This GPA and the rights and duties of the Parties hereto shall be construed and deternined in accordance with
the internal |laws of the State of New York, United States of America, without regard to its conflict of |aws principles and
wi thout application of the United Nations Convention on Contracts for the International Sale of Goods.

20. DI SPUTE RESCOLUTI ON. Unl ess otherw se agreed in witing, the exclusive procedure for handling disputes shall be as set forth
herein. Notwithstanding such procedures, any Participant may, at any time, seek injunctive relief in addition to the process
descri bed bel ow.

(a) Prior to nediation or arbitration the disputing Participants shall seek informal resolution of disputes. The process shall be
initiated with witten notice of one Participant to the other describing the dispute with reasonable particularity followed with
a witten response within ten (10) days of receipt of notice. Each Participant shall pronptly designate an executive with
requisite authority to resolve the dispute. The informal procedure shall conmence within ten (10) days of the date of response.
Al reasonabl e requests for non-privileged information reasonably related to the dispute shall be honored. If the dispute is not
resolved within thirty (30) days of commencenent of the procedure either Participant may proceed to mediation or arbitration
pursuant to the rules set forth in (b) or (c) below

(b) If the dispute has not been resolved pursuant to (a) above or, if the disputing Participants fail to comence infornal

di spute resolution pursuant to (a) above, either Participant may, in witing and within twenty (20) days of the response date
noted in (a) above, ask the other Participant to participate in a one (1) day nediation with an inpartial nediator, and the other
Participant shall do so. Each Participant will bear its own expenses and an equal share of the fees of the nediator. If the

nedi ation is not successful the Participants may proceed with arbitration pursuant to (c) bel ow.

(c) If the dispute has not been resolved pursuant to (a) or (b) above, the dispute shall be pronptly referred, no later than one
(1) year fromthe date of original notice and subject to applicable statute of linmtations, to binding arbitration in accordance
with the UNCITRAL Arbitration Rules in effect on the date of this contract. The appointing authority shall be the International
Centre for Dispute Resolution. The case shall be administered by the International Centre for Dispute Resolution under its
Procedures for Cases under the UNCI TRAL Arbitration Rules. Each Participant shall bear its own expenses and shall share equally
in fees of the arbitrator. Al arbitrators shall have substantial experience in information technology and/or in the

tel ecomuni cations business and shall be selected by the disputing participants in accordance with UNCI TRAL Arbitration Rules. If
any arbitrator, once selected is unable or unwilling to continue for any reason, replacenment shall be filled via the process
descri bed above and a re-hearing shall be conducted. The disputing Participants will provide each other with all requested
docunents and records reasonably related to the dispute in a manner that will nininize the expense and inconveni ence of both
parties. Discovery will not include depositions or interrogatories except as the arbitrators expressly allow upon a show ng of
need. |f disputes arise concerning discovery requests, the arbitrators shall have sole and conplete discretion to resolve the

di sputes. The parties and arbitrator shall be guided in resolving discovery disputes by the Federal Rules of Civil Procedure. The
Participants agree that time of the essence principles shall guide the hearing and that the arbitrator shall have the right and
authority to issue nonetary sanctions in the event of unreasonable delay. The arbitrator shall deliver a witten opinion setting
forth findings of fact and the rationale for the award within thirty (30) days follow ng conclusion of the hearing. The award of
the arbitrator, which may include |egal and equitable relief, but which nay not include punitive damages, will be final and

bi ndi ng upon the disputing Participants, and judgment may be entered upon it in accordance with applicable |lawin any court
having jurisdiction thereof. In addition to award the arbitrator shall have the discretion to award the prevailing Participant
all or part of its attorneys' fees and costs, including fees associated with arbitrator, if the arbitrator deternines that the
positions taken by the other Participant on material issues of the dispute were without substantial foundation. Any conflict
between the UNCI TRAL Arbitration Rules and the provisions of this GPA shall be controlled by this GPA

21. | NTEGRATED AGREEMENT. This GPA, constitutes the conplete integrated agreenment between the parties concerning the subject

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 407

natter hereof. Al prior and contenporaneous agreenents, understandings, negotiations or representations, whether oral or in
witing, relating to the subject matter of this GPA are superseded and canceled in their entirety.

22. WAIVER. No waiver of any of the provisions of this GPA shall be deened or shall constitute a waiver of any other provision of
this GPA, whether or not similar, nor shall such waiver constitute a continuing waiver unless otherw se expressly so provided in

witing. The failure of either party to enforce at any tine any of the provisions of this GPA or the failure to require at any
time performance by either party of any of the provisions of this GPA shall in no way be construed to be a present or future
wai ver of such provisions, nor in any way affect the ability of a Participant to enforce each and every such provision
thereafter.

or otherw se associated in or

23. | NDEPENDENT CONTRACTORS. Nothing in this GPA shall
with the business of the other. Parties are, and shall
any debts, accounts, obligations, or other liabilities
to incur debts or other obligations of any kind on the

neke the Parties partners, joint venturers,
al ways renmin, independent contractors. No Participant shall be liable for
of the other Participant, its agents or enployees. No party is authorized
part of or as agent for the other. This GPA is not a franchise agreenent

and does not create a franchise relationship between the parties,

and if any provision of this GPAis deened to create a

franchi se between the parties, then this GPA shall automatically terminate.

24. CAPTI ONS AND HEADI NGS. The captions and headings used in this GPA are used for convenience only and are not to be given any
legal effect.

25. EXECUTION. This GPA may be executed in counterparts, each of which so executed will be deened to be an original and such
counterparts together will constitute one and the same Agreenent. The Parties shall transmt to each other a signed copy of the
GPA by any neans that faithfully reproduces the GPA along with the Signature. For purposes of this GPA, the term "signature"
shall include digital signatures as defined by the jurisdiction of the Participant signing the GPA

Exhibit A

Wei ght Range Requirenents

0-99 May only be used under authorization of Oaner

100-199 May only be used by the Oaner's service
provider, regardl ess of authorization.

200- 299 Reserved -- do not use for el64 context.
300-399 May only be used by the owner of the code under
which the Oaner's nunber is a part of.

400- 499 May be used by any entity providing access via
direct connectivity to the Public Sw tched

Tel ephone Net wor k.

500-599 May be used by any entity providing access via
indirect connectivity to the Public Sw tched

Tel ephone Network (e.g. Via another Vol P

provi der)

600- Reserved-- do not use for el64 context.
Participant Participant

Conpany:

Addr ess:

Emai | :

Aut hori zed Signature Authorized Signature

Name:

END OF GENERAL PEERI NG AGREEMENT

How to Peer using this GPA If you wish to exchange routing information with parties using the el64 DUNDi context,
is execute this GPA with any nenber of the Peering Systemand you will
Routes avail able in accordance with this GPA

all you nust do
become a nmenber of the Peering Systemand be able to nake

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

408

DUNDi, | AX, Asterisk and GPA are tradenarks of Digium Inc.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 409

E.164 NUmber Mapping (ENUM)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 410

The ENUMLOOKUP Dialplan Function

The ENUMLOOKUP function is more complex than it first may appear, and this guide is to give a general overview and set of examples that may be
well-suited for the advanced user to evaluate in their consideration of ENUM or ENUM-like lookup strategies. This document assumes a familiarity with
ENUM (RFC3761) or ENUM-like methods, as well as familiarity with NAPTR DNS records (RFC2915, RFC3401-3404). For an overview of NAPTR records,
and the use of NAPTRs in the ENUM global phone-number-to-DNS mapping scheme, please see http://www.voip-info.org/tiki-index.php?page=ENUM for
more detail.

Using ENUM within Asterisk can be simple or complex, depending on how many failover methods and redundancy procedures you wish to utilize.
Implementation of ENUM paths is supposedly defined by the person creating the NAPTR records, but the local administrator may choose to ignore certain
NAPTR response methods (URI types) or prefer some over others, which is in contradiction to the RFC. The ENUMLOOKUP method simply provides
administrators a method for determining NAPTR results in either the globally unique ENUM (el164.arpa) DNS tree, or in other ENUM-like DNS trees which
are not globally unique. The methods to actually create channels ("dial") results given by the ENUMLOOKUP function is then up to the administrator to
implement in a way that best suits their environment.

Function: ENUMLOOKUP(nunber [, Met hod-type[, options[, record#[, zone-suffix]]]])

Performs an ENUM tree lookup on the specified number, method type, and ordinal record offset, and returns one of four different values:

. Post-parsed NAPTR of one method (URI) type

. Count of elements of one method (URI) type

. Count of all method types

. Full URI of method at a particular point in the list of all possible methods

A WOWDN PR

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 411

http://www.voip-info.org/tiki-index.php?page=ENUM

ENUMLOOKUP Arguments

number - Telephone number or search string. Only numeric values within this string are parsed; all other digits are ignored for search, but
are re-written during NAPTR regexp expansion.
service_type - tel, sip, h323, iax2, mailto, ...[any other string], ALL. Default type is "sip". Special name of "ALL" will create a list of method
types across all NAPTR records for the search number, and then put the results in an ordinal list starting with 1. The position number
specified will then be returned, starting with 1 as the first record (lowest value) in the list. The service types are not hardcoded in Asterisk
except for the default (sip) if no other service type specified; any method type string (IANA-approved or not) may be used except for the
string "ALL".
options

® ¢ - count. Returns the number of records of this type are returned (regardless of order or priority.) If "ALL" is the specified

service_type, then a count of all methods will be returned for the DNS record.

record# - Which record to present if multiple answers are returned integer = The record in priority/order sequence based on the total
count of records passed back by the query. If a service_type is specified, all entries of that type will be sorted into an ordinal list starting
with 1 (by order first, then priority). The default of options is "1"
zone_suffix - Allows customization of the ENUM zone. Default is e164.arpa.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 412

ENUMLOOKUP Examples

Let's use this ENUM list as an example (note that these examples exist in the DNS, and will hopefully remain in place as example destinations, but they
may change or become invalid over time. The end result URIs are not guaranteed to actually work, since some of these hostnames or SIP proxies are
imaginary. Of course, the tel: replies go to directory assistance for New York City and San Francisco...) Also note that the complex SIP NAPTR at weight
30 will strip off the leading "+" from the dialed string if it exists. This is probably a better NAPTR than hard-coding the number into the NAPTR, and it is
included as a more complex regexp example, though other simpler NAPTRs will work just as well.

0.2.0.1.1.6.5.1.0.3. 1. 1ol igo.com 3600 IN NAPTR 10 100 "u" "E2U+tel" "Unable to render enbedded object: File (+12125551212) not
found. " .

0.2.0.1.1.6.5.1.0.3. 1. 1oligo.com 3600 IN NAPTR 21 100 "u" "E2U+tel" "Unable to render enbedded object: File (+14155551212) not
found. " .

0.2.0.1.1.6.5.1.0.3. 1. 1oligo.com 3600 IN NAPTR 25 100 "u" "E2U+sip" "Unable to render embedded object: File

(2203@i p. fox-den.con) not found." .

0.2.0.1.1.6.5.1.0.3. 1. 1oligo.com 3600 IN NAPTR 26 100 "u" "E2U+sip" "Unable to render enmbedded object: File

(1234@i p- 2. fox-den. com) not found." .

0.2.0.1.1.6.5.1.0.3. 1. 1oligo.com 3600 IN NAPTR 30 100 "u" "E2U+sip" "Unable to render embedded object: File

(\\1@i p- 3. fox-den.con) not found." .

0.2.0.1.1.6.5.1.0.3.1.loligo.com 3600 IN NAPTR 55 100 "u" "E2U+mailto" "Unable to render enbedded object: File

(jtodd@ ox-den.com) not found." .

Example 1: Simplest case, using first SIP return (use all defaults except for domain name)

exten => 100, 1, Set (f 00=${ ENUMLOCKUP(+13015611020, ,,, 1 ol i go.com})

returns: ${foo}="2203@sip.fox-den.com"

Example 2: What is the first "tel" pointer type for this number? (after sorting by order/preference; default of "1" is assumed in options field)

exten => 100, 1, Set (f 00=${ ENUM_LOOKUP(+13015611020, tel,,,loligo.com})

returns: ${foo}="+12125551212"

Example 3: How many "sip" pointer type entries are there for this number?

exten => 100, 1, Set (f 00=${ ENUMLOOKUP(+13015611020, si p, c,,l ol i go.com})

returns: ${foo}=3

Example 4: For all the "tel" pointer type entries, what is the second one in the list? (after sorting by preference)

exten => 100, 1, Set (f 00=${ ENUMLOOKUP(+13015611020, tel,, 2,1 0l i go.com})

returns: ${foo}="+14155551212"

Example 5: How many NAPTRs (tel, sip, mailto, etc.) are in the list for this number?

exten => 100, 1, Set (f 00=${ ENUM_OOKUP(+13015611020, ALL, c,,loligo.com})

returns: ${foo}=6

Example 6: Give back the second full URI in the sorted list of all NAPTR URIs:

exten => 100, 1, Set (f 00=${ ENUMLOOKUP(+13015611020, ALL, , 2, | ol i go. com })

returns: ${foo}="tel:+14155551212" [note the "tel:" prefix in the string]

Example 7: Look up first SIP entry for the number in the el64.arpa zone (all defaults)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 413

exten => 100, 1, Set (f 00=${ ENUM_OOKUP(+437203001721) })

returns: ${foo}="enum-test@sip.nemox.net" [note: this result is subject to change as it is "live" DNS and not under my control]

Example 8: Look up the ISN mapping in freenum.org alpha test zone

exten => 100, 1, Set (f 00=${ ENUM_LOOKUP(1234* 256, ,,,freenumorg)})

returns: ${foo}="1234@204.91.156.10" [note: this result is subject to change as it is "live" DNS]

Example 9: Give back the first SIP pointer for a number in the enum.yoydynelabs.com zone (invalid lookup)

exten => 100, 1, Set (f 00=${ ENUMLOOKUP(1234567890, si p, , 1, enum yoyodynel abs. com })

returns: ${foo}="

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 414

ENUMLOOKUP Usage Notes and Subtle Features

® The use of " in lookups is confusing, and warrants further explanation. All E.164 numbers ("global phone numbers") by definition need a
leading " during ENUM lookup. If you neglect to add a leading ", you may discover that numbers that seem to exist in the DNS aren't
getting matched by the system or are returned with a null string result. This is due to the NAPTR reply requiring a " in the regular
expression matching sequence. Older versions of Asterisk add a " from within the code, which may confuse administrators converting to
the new function. Please ensure that all ENUM (el164.arpa) lookups contain a leading " before lookup, so ensure your lookup includes
the leading plus sign. Other DNS trees may or may not require a leading " - check before using those trees, as it is possible the parsed
NAPTRs will not provide correct results unless you have the correct dialed string. If you get console messages like "WARNING[24907]:
enum.c:222 parse_naptr: NAPTR Regex match failed." then it is very possible that the returned NAPTR expects a leading " in the search
string (or the returned NAPTR is mis-formed.)

® |f a query is performed of type "c" ("count"”) and let's say you get back 5 records and then some seconds later a query is made against
record 5 in the list, it may not be the case that the DNS resolver has the same answers as it did a second or two ago - maybe there are
only 4 records in the list in the newest query. The resolver should be the canonical storage location for DNS records, since that is the
intent of ENUM. However, some obscure future cases may have wildly changing NAPTR records within several seconds. This is a corner
case, and probably only worth noting as a very rare circumstance. (note: | do not object to Asterisk's dnsmgr method of locally caching
DNS replies, but this method needs to honor the TTL given by the remote zone master. Currently, the ENUMLOOKUP function does not
use the dnsmgr method of caching local DNS replies.)

® |f you want strict NAPTR value ordering, then it will be necessary to use the "ALL" method to incrementally step through the different
returned NAPTR pointers. You will need to use string manipulation to strip off the returned method types, since the results will look like
"sip:12125551212" in the returned value. This is a non-trivial task, though it is required in order to have strict RFC compliance and to
comply with the desires of the remote party who is presenting NAPTRSs in a particular order for a reason.

® Default behavior for the function (even in event of an error) is to move to the next priority, and the result is a null value. Most ENUM
lookups are going to be failures, and it is the responsibility of the dialplan administrator to manage error conditions within their dialplan.
This is a change from the old app_enumlookup method and it's arbitrary priority jumping based on result type or failure.

® Anything other than digits will be ignored in lookup strings. Example: a search string of "+4372030blah01721" will turn into
1.2.7.1.0.0.3.0.2.7.3.4.e164.arpa. for the lookup. The NAPTR parsing may cause unexpected results if there are strings inside your
NAPTR lookups.
If there exist multiple records with the same weight and order as a result of your query, the function will RANDOMLY select a single
NAPTR from those equal results.

® Currently, the function ignores the settings in enum.conf as the search zone name is now specified within the function, and the H323
driver can be chosen by the user via the dialplan. There were no other values in this file, and so it becomes deprecated.

® The function will digest and return NAPTRs which use older (deprecated) style, reversed method strings such as "sip+E2U" instead of the
more modern "E2U+sip"

® There is no provision for multi-part methods at this time. If there are multiple NAPTRs with (as an example) a method of "E2U+voice:sip"
and then another NAPTR in the same DNS record with a method of ""E2U+sip", the system will treat these both as method "sip" and they
will be separate records from the perspective of the function. Of course, if both records point to the same URI and have equal
priority/weight (as is often the case) then this will cause no serious difficulty, but it bears mentioning.

® |SN (ITAD Subscriber Number) usage: If the search number is of the form ABC*DEF (where ABC and DEF are at least one numeric digit)
then perform an ISN-style lookup where the lookup is manipulated to C.B.A.DEF.domain.tld (all other settings and options apply.) See htt
p:/lwww.freenum.org/ for more details on ISN lookups. In the unlikely event you wish to avoid ISN re-writes, put an "n" as the first digit of
the search string - the "n" will be ignored for the search.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 415

http://www.freenum.org/
http://www.freenum.org/

More ENUMLOOKUP Examples

All examples below except where noted use "el64.arpa" as the referenced domain, which is the default domain name for ENUMLOOKUP. All numbers are
assumed to not have a leading "+" as dialed by the inbound channel, so that character is added where necessary during ENUMLOOKUP function calls.

extensions.conf

; exanmple 1

; Assunmes North American international dialing (011) prefix.

; Look up the first SIP result and send the call there, otherw se
; send the call out a PRI. This is the nost sinple possible

; ENUM exanpl e, but only uses the first SIP reply in the list of

;. NAPTR(S).

exten => _011., 1, Set (enunr esul t =${ ENUMLOOKUP(${ EXTEN: 3}) })
exten => _011.,n,Di al (SIP/ ${enunresult})
exten => _011.,n, Di al (DAHDI / g1/ ${ EXTEN})

; example 2

; Assunmes North Anerican international dialing (011) prefix.

; Check to see if there are nmultiple SIP NAPTRs returned by

; the | ookup, and dial each in order. If none work (or none

; exist) then send the call out a PRI, group 1.

exten => _011., 1, Set (si pcount =${ ENUMLOOKUP(${ EXTEN: 3}, si p, ¢) } | count er =0)
exten => _011.,n, Wile($["${counter}"<"${sipcount}"])

exten => _011.,n, Set (count er =$[${ count er } +1])

exten => _011.,n, Di al (SI P/ ${ ENUMLOOKUP(${ EXTEN: 3}, si p,, ${counter})})
exten => _011.,n, EndWile

exten => _011.,n, Di al (DAHDI / g1/ ${ EXTEN})

; exanmple 3

; This exanple expects an ${EXTEN} that is an e.164 nunber (like

; 14102241145 or 437203001721)

; Search through el64.arpa and then al so search through el64. org

; to see if there are any valid SIP or |AX termi nation capabilities.
I f none, send call out via DAHDI channel 1.

; Start first with el64.arpa zone...

exten => _X , 1, Set (si pcount =${ ENUMLOOKUP(${ EXTEN}, si p, c) } | count er =0)

exten => X ,2,Gotol f($["${counter}"<"${sipcount}"]?3:6)

exten => _X., 3, Set (count er=$[${count er} +1])

exten => X, 4, Dial (SI P/ ${ ENUMLOOKUP(${ EXTEN}, si p,, ${counter})})

exten => _X ,5,Gotol f($["${counter}"<"${sipcount}"]?3:6)

exten => _X., 6, Set (i axcount =${ ENUMLOOKUP(${ EXTEN}, i ax2, c) } | count er =0)

exten => X ,7,CGotol f($["${counter}"<"${iaxcount}"]?8:11)

exten => _X. , 8, Set (counter=$[${ counter}+1])

exten => _X.,9, D al (1 AX2/ ${ ENUMLOOKUP(${ EXTEN}, i ax2, , ${counter})})
_X., 10, Gotol f ($["${counter}"<"${i axcount}"] ?8: 11)

exten =>

exten => _X., 11, NoOp("No valid entries in el64.arpa for ${EXTEN} - checking in el64.org")

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 416

...then also try el64.org, and look for SIP and | AX NAPTRs. .

exten => _X., 12, Set (si pcount =${ ENUMLOOKUP(${ EXTEN}, si p, c, , e164. or g) } | count er =0)
exten => _X.,13, Gotol f ($["${counter}"<"${sipcount}"]?14:17)

exten => _X., 14, Set (counter=$[${cou